Naive Operations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0

Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ∑ri=l⌊ai/bi⌋
 
Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.
 
Output
Output the answer for each 'query', each one line.
 
Sample Input
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5
 
Sample Output
1
1
2
4
4
6
 
思路:
很明显的线段树,难点在于如何处理ai/bi的向下取整,我们可以对bi建一棵线段树,那么每次add(l,r)操作我们就可以抽象成(l,r)减一,如果区间【l,r】中有数字变为0,则表示b[i]这个数+1,再建一棵线段树储存每个区间+1的信息并将这个数变为原先的值继续循环就好了,querry(l,r),就直接在第二棵线段树上求区间值的和就可以了。
 
之前想到这个思路一直不敢写,感觉会超时,后面问了一下学长,复杂度没问题就AC了 。
实现代码:
 
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid int m = (l + r) >> 1
const int inf = 0x3f3f3f3f;
const int M = 1e5+;
double lazy[M<<];
double b[M],num[M],sum[M<<],minn[M<<];
vector<int>v;
void pushup(int rt){
minn[rt] = min(minn[rt<<],minn[rt<<|]);
} void pushdown(int rt){
if(lazy[rt]){
lazy[rt<<] += lazy[rt];
lazy[rt<<|] += lazy[rt];
minn[rt<<] -= lazy[rt];
minn[rt<<|] -= lazy[rt];
lazy[rt] = ;
}
} void build(int l,int r,int rt){
lazy[rt] = ; minn[rt] = inf;
if(l == r){
minn[rt] = b[l];
return ;
}
mid;
build(lson);
build(rson);
pushup(rt);
} void update(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
minn[rt] -= ;
lazy[rt] += ;
return ;
}
pushdown(rt);
mid;
if(L <= m) update(L,R,lson);
if(R > m) update(L,R,rson);
pushup(rt);
} void update2(int p,int l,int r,int rt){
if(l == r){
minn[rt] = b[l];
return ;
}
mid;
pushdown(rt);
if(p <= m) update2(p,lson);
else update2(p,rson);
pushup(rt);
} int Query(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
return minn[rt];
}
mid;
pushdown(rt);
int ret = inf;
if(L <= m) ret = min(Query(L,R,lson),ret);
if(R > m) ret = min(Query(L,R,rson),ret);
return ret;
} void query1(int l,int r,int rt){
if(l == r){
v.push_back(l);
return ;
}
mid;
pushdown(rt);
pushdown(rt);
if(minn[rt<<] == ) query1(lson);
if(minn[rt<<|] == ) query1(rson);
} void pushup1(int rt){
sum[rt] = sum[rt<<] + sum[rt<<|];
} void build1(int l,int r,int rt){
sum[rt] = ;
if(l == r){
sum[rt] = ;
return ;
}
mid;
build1(lson);
build1(rson);
pushup1(rt);
} void update1(int p,int l,int r,int rt){
if(l == r){
sum[rt] += ;
return ;
}
mid;
if(p <= m) update1(p,lson);
else update1(p,rson);
pushup1(rt);
} int query(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
return sum[rt];
}
mid;
int ret = ;
if(L <= m) ret += query(L,R,lson);
if(R > m) ret += query(L,R,rson);
return ret;
} int main()
{
int n,q,x,l,r;
char op[];
while(scanf("%d%d",&n,&q)!=EOF){
for(int i = ;i <= n;i ++){
scanf("%d",&x);
b[i] = x;
}
build(,n,);
build1(,n,);
while(q--){
scanf("%s",op);
if(op[] == 'a'){
//cout<<"update"<<endl;
scanf("%d%d",&l,&r);
update(l,r,,n,); //将第一棵树的l,r区间-1
int cnt = Query(l,r,,n,);//求第一棵树的l,r区间的最小值
//cout<<"cnt: "<<cnt<<endl;
if(cnt == ){ //如果区间最小值为0
query1(,n,); //找到区间所有0的下表寸进vector里
for(int i = ;i < v.size(); i++){ //遍历
//cout<<"v[i] :"<<v[i]<<endl;
update1(v[i],,n,); //在第二颗数记下更新值
update2(v[i],,n,); //将现在为0的数变成原来的值
}
v.clear();
}
}
else {
//cout<<"query"<<endl;
scanf("%d%d",&l,&r);
int ans = query(l,r,,n,);
printf("%d\n",ans);
}
}
}
return ;
}

hdu 6315 Naive Operations (2018 Multi-University Training Contest 2 1007)的更多相关文章

  1. HDU 6315 Naive Operations(线段树+区间维护)多校题解

    题意:a数组初始全为0,b数组题目给你,有两种操作: 思路:dls的思路很妙啊,我们可以将a初始化为b,加一操作改为减一,然后我们维护一个最小值,一旦最小值为0,说明至少有一个ai > bi,那 ...

  2. HDU 6351 Naive Operations(线段树)

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=6315 Naive Operations Time Limit: 6000/3000 MS (Java/O ...

  3. HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2

    题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...

  4. 杭电多校第二场 hdu 6315 Naive Operations 线段树变形

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  5. HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树

    hdu 6315 题意:对于一个数列a,初始为0,每个a[ i ]对应一个b[i],只有在这个数字上加了b[i]次后,a[i]才会+1. 有q次操作,一种是个区间加1,一种是查询a的区间和. 思路:线 ...

  6. HDU 6315: Naive Operations

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  7. HDU 6315 Naive Operations(线段树区间整除区间)

    Problem DescriptionIn a galaxy far, far away, there are two integer sequence a and b of length n.b i ...

  8. HDU 6315 Naive Operations 【势能线段树】

    <题目链接> 题目大意: 给出两个序列,a序列全部初始化为0,b序列为输入值.然后有两种操作,add x y就是把a数组[x,y]区间内全部+1,query x y是查询[x,y]区间内∑ ...

  9. HDU 6315 Naive Operations(线段树+复杂度均摊)

    发现每次区间加只能加1,最多全局加\(n\)次,这样的话,最后的答案是调和级数为\(nlogn\),我们每当答案加1的时候就单点加,最多加\(nlogn\)次,复杂度可以得当保证. 然后问题就是怎么判 ...

随机推荐

  1. SelectObject函数

    SelectObject 函数功能:该函数选择一对象到指定的设备上下文环境中,该新对象替换先前的同样类型的对象. 函数原型:HGDIOBJ SelectObject(HDC hdc, HGDIOBJ ...

  2. Codeforces round 1103

    Div1 534 我可能还太菜了.jpg 果然我只是Div 2 选手 A (这题是Div1吗... 直接构造:竖着放的在第一行和第二行,然后横着放的时候直接放在第三行就行. #include < ...

  3. 大数据入门第二十二天——spark(二)RDD算子(1)

    一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的 ...

  4. 《图说VR入门》——DeepoonVR的大鹏(陀螺仪)枪

    <图说VR入门>--VR大朋的(陀螺仪)枪 本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接: http://blog.csdn.net/cartzhang/ar ...

  5. 带Alpha通道的色彩叠加问题

    css3的rgba色彩模式.png/gif图片的alpha通道.canvas的rgba色彩模式.css3的阴影.css3的opacity属性等等,这些应用在网页中,有意无意间,我们的页面多了许多半透明 ...

  6. 原创zynq文章整理(MiZ702教程+例程)

    MiZ702教程+例程  网盘链接:  http://pan.baidu.com/s/1sj23yxv 不时会跟新版本,增加勘误之类的,请关注--

  7. python 单体模式 的几种实现

    这是本人的一篇学习笔记. 本文用 python 实现单体模式,参考了这里 一.修改父类的 __dict__ class Borg: _shared_state = {} def __init__(se ...

  8. coco2d-x游戏逻辑结构

    在Cocos2d-x中开发游戏的主要逻辑和结构是:先创建场景,在场景上添加一层或多层,然后可以在指定层上添加精灵.菜单.文字等,可以为精灵.文字执行某个动作(或者移动),检测玩家触屏事件,开启任务调度 ...

  9. 第二十九章 springboot + zipkin + mysql

    zipkin的数据存储可以存在4个地方: 内存(仅用于测试,数据不会持久化,zipkin-server关掉,数据就没有了) 这也是之前使用的 mysql 可能是最熟悉的方式 es Cassandra ...

  10. effective c++ 笔记 (31-34)

    //---------------------------15/04/20---------------------------- //#32   确定你的public继承塑膜出 is-a 关系 { ...