BZOJ4735:你的生命已如风中残烛(组合数学)
Description
Input
Output
Sample Input
3
Sample Output
样例解释一
m!种牌堆中,{3,0,0),{0,3,0){0,0,3)各有两个,其中只有第一种满足条件。
Solution
六花真是太可爱了
答案是$\frac{m!}{m-n+1}$。
假设所有的数都减$1$,然后在序列末尾添上一个$-1$。也就是要保证所有的前缀和大于等于$0$。
把这个序列头尾相接成一个环,$m+1$个数圆排列的个数为$m!$。
画个图感性理解一下可以发现每个圆排列只有一种断法。
又因为我们一开始加了一个$-1$,而这个$-1$可能是$n-m+1$个$-1$里面的任意一个,所以要除掉。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
#define MOD (998244353)
using namespace std; LL n,m,ans=; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} int main()
{
n=read();
for (int i=; i<=n; ++i) m+=read();
for (int i=; i<=m; ++i)
if (i!=m-n+) (ans*=i)%=MOD;
printf("%lld\n",ans);
}
BZOJ4735:你的生命已如风中残烛(组合数学)的更多相关文章
- BZOJ4735 你的生命已如风中残烛(组合数学)
将每个位置上的数都-1,则显然相当于前缀和始终非负. 然后就是完全想不到的了.考虑往里面加一张-1的牌.假设在一个合法排列的最后添上一个-1,那么在该排列的所有循环同构排列中,满足前m个前缀和都非负的 ...
- BZOJ4735 你的生命已如风中残烛 【数学】
题目链接 BZOJ4735 题解 给定一个序列,有的位置为\(w_i - 1\),有的位置为\(-1\),问有多少种排列,使得任意前缀和非负? 我们末尾加上一个\(-1\),就是要保证除了末尾外的前缀 ...
- [LOJ#2329]「清华集训 2017」我的生命已如风中残烛
[LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...
- 2018.10.30 uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)
传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+ ...
- uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)
传送门 一道打表题 我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\) 考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1 ...
- 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)
洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...
- UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】
题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...
- 【UOJ】#273. 【清华集训2016】你的生命已如风中残烛
题目链接:http://uoj.ac/problem/273 $${Ans=\frac{\prod _{i=1}^{m}i}{w-n+1}}$$ #include<iostream> #i ...
- uoj#344. 【清华集训2017】我的生命已如风中残烛(计算几何)
题面 传送门 题解 orzxyx 首先我们发现,一个点如果被到达大于一次,那么这个点肯定在一个环上.所以在不考虑环的情况下每个点只会被到达一次,那么我们就可以直接暴力了 简单来说,我们对每个点\(i\ ...
随机推荐
- sqlserver查询连续签到天数
create table #t(keyId int identity,actionDate datetime)insert into #t(actionDate) select distinct Cr ...
- [基础篇] 玄机网C#培训课程-初级.
课程目录 0x01第一课课前准备vs的选择与安装常用工具/网址 http://msdn.itellyou.cn/vs常用设置 0x02第二课C#的语法样式 编程风格VS的常用功能 俩个注意 ...
- c#里面如何激活一个外部程序进程并显示在最前
using System.Diagnostics; using System.Runtime.InteropServices; [DllImport("user32.dll")] ...
- sql语句将查询的结果拼接成字符串
表样: sqlserver: --方法1 DECLARE @STR VARCHAR(8000) SELECT @STR=ISNULL(@STR+',','')+userID FROM (SELECT ...
- Java多线程--JDK并发包(2)
Java多线程--JDK并发包(2) 线程池 在使用线程池后,创建线程变成了从线程池里获得空闲线程,关闭线程变成了将线程归坏给线程池. JDK有一套Executor框架,大概包括Executor.Ex ...
- 设计模式-组合模式(Composite)
一.概念 将对象组合成树形结构以表示“部分-整体”的层次结构.组合模式使得用户对单个对象和组合对象的使用具有一致性. 二.模式动机 组合模式,通过设计一个抽像的组件类,使它既代表叶子对象,又代表组合对 ...
- Java虚拟机 - 类加载机制
[深入Java虚拟机]之四:类加载机制 类加载过程 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.它们开始的顺序如下 ...
- Codeforces445B(SummerTrainingDay06-N 并查集)
B. DZY Loves Chemistry time limit per test:1 second memory limit per test:256 megabytes input:standa ...
- 网络基础 HTTP协议之http url简介
HTTP协议之http url简介 by:授客 QQ:1033553122 http url简介 http url通过http协议,用于定位网络资源,是一种特殊类型的URI(统一资源定位) http_ ...
- 【转】C++11的enum class & enum struct和enum
转自:https://blog.csdn.net/sanoseiichirou/article/details/50180533 C++标准文档——n2347(学习笔记) 链接:http://www. ...