本文将同步发布于:

题目

题意简述

给定 \(y\),求 \(\varphi(x)=y\) 中 \(x\) 的个数和最大值。

\(1\leq y\leq 10^{12}\)。

题解

欧拉函数

解决这个问题,就必然要知道欧拉函数的计算式是什么。

显然,欧拉函数的计算式子为:

\[\varphi(x)=\prod_{p_i}(p_i-1)p_i^{c_i-1}
\]

我们不难想到,若 \((p_i-1)\mid y\),那么 \(x\) 可能含有 \(p_i\) 这个质因数,我们直接搜索即可。

复杂度证明

冷静分析,我们不难发现,最劣情况下,一个数 \(y\) 满足 \(x\) 含有 \(p_i\),则 \((p_i-1)p_i\mid y\),因此本质不同的质因子个数最多有 \(11\) 个,我们参考反素数的贪心分析,不难写出搜索程序找到最劣情况,发现搜索状态数不多(数量级在 \(10^6\))。

时间复杂度得到了保证。

拓展阅读

个数:A014197

最大值:A057635

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; bool st; inline ll max(reg ll a,reg ll b){
return a>b?a:b;
} const int S=1e6; bool vis[S+1];
int tot,prime[S+1]; inline void Init(reg int n){
for(reg int i=2;i<=n;++i){
if(!vis[i])
prime[++tot]=i;
for(reg int j=1;j<=tot&&i*prime[j]<=n;++j){
vis[i*prime[j]]=true;
if(!(i%prime[j]))
break;
}
}
return;
} inline bool isPrime(reg ll x){
if(x<=S)
return !vis[x];
else{
for(reg int i=1;i<=tot&&1ll*prime[i]*prime[i]<=x;++i)
if(!(x%prime[i]))
return false;
return true;
}
} int cnt;
ll Max;
vector<ll> V; inline void dfs(reg ll y,reg int p,reg ll pod){
if(y==1){
++cnt;
Max=max(Max,pod);
return;
}
if(y+1>V[p]&&isPrime(y+1))
++cnt,Max=max(Max,pod*(y+1));
for(reg int i=p+1,siz=V.size();i<siz&&1ll*(V[i]-1)*(V[i]-1)<=y;++i)
if(!(y%(V[i]-1))){
reg ll ny=y/(V[i]-1),npod=pod*V[i];
dfs(ny,i,npod);
while(!(ny%V[i]))
ny/=V[i],npod*=V[i],dfs(ny,i,npod);
}
return;
} bool ed; int main(void){
Init(S);
int t;
scanf("%d",&t);
while(t--){
ll y;
scanf("%lld",&y);
V.clear();
V.push_back(2);
for(reg int i=2;i<=tot;++i)
if(!(y%(prime[i]-1)))
V.push_back(prime[i]);
cnt=Max=0;
dfs(y,0,1),dfs(y,0,2);
reg ll bas=2;
while(!(y&1))
y>>=1,bas<<=1,dfs(y,0,bas);
printf("%d %lld\n",cnt,Max);
}
fprintf(stderr,"%.3lf s\n",1.0*clock()/CLOCKS_PER_SEC);
fprintf(stderr,"%.3lf MiB\n",(&ed-&st)/1048576.0);
return 0;
}

「题解」黑暗塔 wizard的更多相关文章

  1. 「SHOI2016」黑暗前的幻想乡 解题报告

    「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  4. 「CH6202」黑暗城堡

    「CH6202」黑暗城堡 传送门 这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数. 我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程. 当我们把点 \(x\) 加 ...

  5. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  6. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  7. 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡

    题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...

  8. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  9. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

随机推荐

  1. js--吐血总结最近遇到的变态表单校验---element+原生+jq+easyUI(前端职业生涯见过的最烦的校验)

    最近写了无数各种形式的表单,记录下奇奇怪怪的校验规则~ 一:首先是element自带的rules校验规则: element作为常用框架,自带rules属性简单易懂,官方文档一目了然,不再赘述,应付常用 ...

  2. JS求一个字符串在另一个字符串中出现的次数

    参数说明: subString子字符串 originString母字符串 isIgnoreCap是否忽略大小写,默认忽略 function stringFre(subString, originStr ...

  3. 看完这篇包你进大厂,实战即时聊天,一文说明白:聊天服务器+聊天客户端+Web管理控制台。

    一.前言 说实话,写这个玩意儿是我上周刚刚产生的想法,本想写完后把代码挂上来赚点积分也不错.写完后发现这东西值得写一篇文章,授人予鱼不如授人以渔嘛(这句话是这么说的吧),顺便赚点应届学生MM的膜拜那就 ...

  4. ES6新增数组的一些思考和使用

    ES6数组的新增 伪数组转换为数组的两种方法 Array.from()把一个伪数组转换为一个真正的数组 伪数组:有下标和length,但是不能使用数组方法 let lis = document.que ...

  5. (Dubbo架构)基于MDC+Filter的跨应用分布式日志追踪解决方案

    在单体应用中,日志追踪通常的解决方案是给日志添加 tranID(追踪ID),生成规则因系统而异,大致效果如下: 查询时只要使用 grep 命令进行追踪id筛选即可查到此次调用链中所有日志,但是在 du ...

  6. [bug] Mysql 对实体 "characterEncoding" 的引用必须以 ';' 分隔符结尾。

    参考 https://blog.csdn.net/cherrycheng_/article/details/51251441?

  7. commit信息修改

    场景:向社区提交commit信息,code reviewer给你回复说,请添加TrivialFix并且完善commit信息.好吧,虽然这对代码的运行无关紧要,但是对于日后的代码管理是很有必要的. 解决 ...

  8. debian用户手册-20200317

    https://www.debian.org/doc/manuals/debian-reference/ 文档与使用手册在每一个操作系统中都是很重要的一部份,是描述程序操作和使用的技术手册.正由于说明 ...

  9. 064.Python开发虚拟环境

    在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题:亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾难.此时,我们需要对于不同的工程使用不同 ...

  10. Wrong——Python

    1.向MySQL中插入时间(年月日时分秒),在时分秒处报错.在年月日与时分秒中间有个空格.解决办法:在sql语句中时间用一个" "包起来就可以了.. 2.在Ubuntu的cront ...