Solution -「CF 575G」Run for beer
\(\mathcal{Description}\)
Link.
给定 \(n\) 个点 \(m\) 条边的无向图,边有边权,一个人初始速度为 \(1\),每走一条边速度 \(\div10\),求从 \(1\) 走到 \(n\) 的最小耗时。
\(n,m\le10^5\),\(0\le\text{边权}\le9\)。
\(\mathcal{Solution}\)
直观地,路径长度即为把经过的边权从低位到高位写成的十进制数。
首先排除前导 \(0\)——把从终点出发,仅走边权为 \(0\) 的边可达的结点全部与终点缩点。此时的最短路需要保证路径条数最少的前提下保证字典序最小。BFS 分层,维护当前层外围最优的一堆结点,用它们向下层扩展直到到达起点。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
#include <vector>
const int MAXN = 2e5, MAXM = 2e5;
int n, m, ecnt, head[MAXN + 5], d[MAXN + 5], suf[MAXN + 5];
bool vis[MAXN + 5];
std::vector<int> curp, nxtp;
std::queue<int> que;
struct Edge { int to, cst, nxt; } graph[MAXM * 2 + 5];
inline void link ( const int s, const int t, const int c ) {
graph[++ ecnt] = { t, c, head[s] };
head[s] = ecnt;
}
inline void initReach () {
for ( int i = 1; i <= n; ++ i ) d[i] = -1;
d[1] = 0, que.push ( 1 );
for ( int u; ! que.empty (); ) {
u = que.front (), que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! ~ d[v = graph[i].to] ) {
d[v] = d[u] + 1, que.push ( v );
}
}
}
}
inline int zeroReach () {
int mind = d[n];
curp.push_back ( n ), vis[n] = true;
for ( int cur = 0; cur ^ curp.size (); ++ cur ) {
int u = curp[cur];
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! vis[v = graph[i].to] && ! graph[i].cst ) {
curp.push_back ( v ), vis[v] = true, suf[v] = u;
if ( mind > d[v] ) mind = d[v];
}
}
}
return mind;
}
int main () {
scanf ( "%d %d", &n, &m );
for ( int i = 1, u, v, w; i <= m; ++ i ) {
scanf ( "%d %d %d", &u, &v, &w ), ++ u, ++ v;
link ( u, v, w ), link ( v, u, w );
}
initReach ();
int dist = zeroReach ();
bool zero = true;
for ( int l = dist; l; -- l ) {
int dig = 10;
for ( int u: curp ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] + 1 == l && graph[i].cst < dig ) {
dig = graph[i].cst;
}
}
}
if ( dig ) zero = false;
if ( l == 1 || ! zero ) putchar ( dig ^ '0' );
for ( int u: curp ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] + 1 == l && graph[i].cst == dig && ! vis[v] ) {
vis[v] = true, nxtp.push_back ( v ), suf[v] = u;
}
}
}
curp = nxtp, nxtp.clear ();
}
if ( zero ) putchar ( '0' );
int ans = 1, u;
for ( u = 1; u ^ n; ++ ans, u = suf[u] );
printf ( "\n%d\n0", ans ), u = 1;
do printf ( " %d", ( u = suf[u] ) - 1 ); while ( u ^ n );
putchar ( '\n' );
return 0;
}
Solution -「CF 575G」Run for beer的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- vue部署服务器以及解决部署到apache路由出现404
最近在开发cms的时候使用Vue.js框架,利用vue-route.vue-cli结合webpack编写了一个单页路由项目,自己在服务器端配置apache.部署完成后,访问没问题,从页面中点击跳转就会 ...
- 学习笔记--Java中的变量
Java中的变量 /** * 关于 Java 语言当中的变量: * * 1. 什么是变量? * - 变量的本质上来说是内存空间,这块空间有(数据类型.名字.字面值) * - 变量包括三部分:数据类型. ...
- 移动端字体图标不显示的Bug
用16进制编码的字体图标在部分小米机型显示不正常. 测试机型:小米1,小米1s,小米2浏览器:微信6.1内置浏览器,QQ浏览器 5.7 X5内核字体图标:不显示svg图标:显示正常 以下来自额微信内置 ...
- 论文翻译:2020_RESIDUAL ACOUSTIC ECHO SUPPRESSION BASED ON EFFICIENT MULTI-TASK CONVOLUTIONAL NEURAL NETWORK
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了 ...
- 通过springBoot集成搭建webScoket服务器
前言: 最近工作中有一个需求,就是服务端要主动推送消息给客户端,而我们平常的Http请求只能一请求一响应,为此学习了webScokset通讯技术,以下介绍的是java 通过SpringBoot集成we ...
- Spring系列2:Spring容器基本概念和使用
本文内容 简单回顾IoC和DI概念 Spring容器的概念 的xml配置和初始化 容器的基本使用 bean的定义和初始化配置 简单理解IoC和DI概念 什么是IoC控制反转? 通俗地但不严谨地讲,以前 ...
- Javascript中数组的定义和常见使用方法
一.定义数组 1.定义数组 var arry=[1,2,'小名',false] //var 数组名=[值1,值2,...] 2.设置数组长度 arry.length=10 //数组长度设置为10 二. ...
- centos6下php53升级为php7
1.查看版本 [root@web-1 blog]# php -v No log handling enabled - turning on stderr logging Created directo ...
- HTML(前端web)
目录 一:HTML前端 1.什么是前端? 2.什么是后端? 3.什么是HTML? 4.HTML不是什么? 5.前端的学习流程 6.BS架构 7.搭建服务器 简易(浏览器访问) 8.浏览器访问报错原因 ...
- 第06讲:Flink 集群安装部署和 HA 配置
Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flin ...