题目链接:https://leetcode.com/problems/super-egg-drop/

题意:给你K个鸡蛋以及一栋N层楼的建筑,已知存在某一个楼层F(0<=F<=N),在不高于F的楼层扔鸡蛋不会碎,鸡蛋碎了不能再用,没碎可以继续使用,问不论F的大小(0<=F<=N),至少需要测量多少次才能测出F的大小。题意挺好理解的,鸡蛋少的话操作肯定多点,相当于行下往上测,鸡蛋比较多就可以使用类似二分的想法了。

思路1:

  dp+二分  时间复杂度O(K*N*log N),空间复杂度O(K*N)  (自己第一次想的就是这个思路630ms,能过但是慢)

  假设我们有i个鸡蛋,我们从x层楼扔下去,如果碎了,说明F<x,相当于使用i-1个鸡蛋测量j-1层至少要测试多少次,个数加1即为答案;没碎,说明F>x,则我们使用i个鸡蛋测量x+1~N的楼层至少需要操作多少次,即N-x个楼层,下面的楼层不同考虑。二者的答案取较大的值即可。

  因此dp的思想就很明显了dp[i][j]表示使用i个鸡蛋测量j个楼层至少需要操作的次数,则dp[i][j] =min( max(dp[i-1][x-1],dp[i][j-x])+1 ,(x<=j)).

  该算法的复杂度是O(K*N^2),交上去应该会TLE

  通过观察我们可以发现dp[i-1][x-1]是随着x的增大而增大(或者不变)的(相同的鸡蛋数层数越多肯定测试次数也越多),同理dp[i][j-x]随着x的增大而减小的,而现在我们要求对于每个x,这两个数的较大值,最后再在这j个值中取一个较小值。如果是连续函数的话,就相当于求两条曲线高的那部分的最小值。如下图所示(图来自leetcode),求的是蓝色部分的最小值。所以我们可以通过二分求出二者“交点“(交点可能不存在)附近的那两个值,答案肯定是这两个值中的一个。所以降了一维,复杂度变为O(K*N*log N)。

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[101][10001];
memset(dp,0,sizeof(dp));
for(int i=1;i<=K;i++)
for(int j=1;j<=N;j++){
dp[0][j]=1e9;
dp[i][j]=1e9;
int l=1,r=j;
int mid;
for(int k=1;k<=20;k++){
mid=(l+r)/2;
if(dp[i-1][mid-1]<dp[i][j-mid])
l=mid;
else r=mid;
}
if(dp[i-1][mid-1]<=dp[i][j-mid])
mid++;
dp[i][j]=min(dp[i-1][mid-1],dp[i][j-(mid-1)])+1;
}
return dp[K][N];
}
};  

思路2:

  dp方程仍然是思路一中的方程,但是对于dp[i][j-x],随着j增大,最优值x的取值也会增大,即下图中的交点,既然x是非递减的,不需要每次都遍历了,因此复杂度可以减少到O(N*K)

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[101][10001];
memset(dp,0,sizeof(dp));
for(int i=1;i<=K;i++){
int x=1;
for(int j=1;j<=N;j++){
dp[0][j]=1e9;
dp[i][j]=1e9;
while(x<j&&max(dp[i-1][x-1],dp[i][j-x])>max(dp[i-1][x],dp[i][j-x-1]))
x++;
dp[i][j]=max(dp[i-1][x-1],dp[i][j-x])+1;
}
}
return dp[K][N];
}
};

  空间复杂度也可以利用循环数组降低到O(N):

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[2][10001];
memset(dp,0,sizeof(dp));
int cnt=0;
for(int j=1;j<=N;j++)
dp[0][j] = dp[1][j] = 1e9;
for(int i=1;i<=K;i++){
int x = 1;
for(int j=1;j<=N;j++){
while(x<j&&max(dp[cnt^0][x-1],dp[cnt^1][j-x])>max(dp[cnt^0][x],dp[cnt^1][j-x-1]))
x++;
dp[cnt^1][j]=max(dp[cnt^0][x-1],dp[cnt^1][j-x])+1;
}
cnt=cnt^1;
}
return dp[cnt^0][N];
}
};

思路3:

  我们改变一下dp方程,dp[i][j]表示使用i个鸡蛋,j次操作,能够测量的最高楼层,假设我们采用最优策略,则对于第j次操作如果鸡蛋碎了,则需要使用i-1个鸡蛋,j-1次操作测量该层下面的楼层;如果鸡蛋没碎,则需要使用i个鸡蛋,j-1次操作测试上面的楼层,因此dp[i][j] = dp[i-1][j-1] + dp[i][j-1] + 1,我们需要找到最小的j使得dp[i][j]>=N 复杂度O(K*log N) (由于是找最小的j,因此外层循环是j)

class Solution {
public:
int superEggDrop(int K, int N) {
int **dp = new int *[K + 1];
for (int i = 0;i <= K;i++) {
dp[i] = new int[N + 1];
memset(dp[i], 0, 4 * (N + 1));
}
for (int j = 1;j<=N;j++)
for (int i = 1;i <= K;i++) {
dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1] + 1;
if (dp[i][j] >= N)
return j;
}
return N;
}
};  

LeetCode 887. Super Egg Drop的更多相关文章

  1. [LeetCode] 887. Super Egg Drop 超级鸡蛋掉落

    You are given K eggs, and you have access to a building with N floors from 1 to N.  Each egg is iden ...

  2. Leetcode 887 Super Egg Drop(扔鸡蛋) DP

    这是经典的扔鸡蛋的题目. 同事说以前在uva上见过,不过是扔气球.题意如下: 题意: 你有K个鸡蛋,在一栋N层高的建筑上,被要求测试鸡蛋最少在哪一层正好被摔坏. 你只能用没摔坏的鸡蛋测试.如果一个鸡蛋 ...

  3. 【LeetCode】887. Super Egg Drop 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 参考资料 日期 题目地址:https://leetc ...

  4. 887. Super Egg Drop

    You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is ident ...

  5. [Swift]LeetCode887. 鸡蛋掉落 | Super Egg Drop

    You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is ident ...

  6. Leetcode - 517 Super Washing Machines

    今天开始定期记录本人在leetcode上刷题时遇到的有意思的题目.   517. Super Washing Machines   You have n super washing machines ...

  7. [LeetCode] 313. Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  8. Leetcode 313. super ugly number

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  9. Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题

    题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...

随机推荐

  1. 深度学*点云语义分割:CVPR2019论文阅读

    深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...

  2. YOLOvi(i=1,2,3,4)系列

    YOLOvi(i=1,2,3,4)系列 YOLOv4论文链接:https://arxiv.org/pdf/2004.10934.pdf YOLOv4源码链接:https://github.com/Al ...

  3. 行人检测与重识别!SOTA算法

    行人检测与重识别!SOTA算法 A Simple Baseline for Multi-Object Tracking, Yifu Zhang, Chunyu Wang, Xinggang Wang, ...

  4. Python_Selenium 之PO模式的思想、优化思路

    一.PO模式思想 PO模式是一种自动化测试设计模式,将页面定位和业务操作分开,也就是把对象的定位和测试脚本分开,从而提供可维护性. PO设计模式基础(页面作为类.元素对象作为属性.元素操作作为方法) ...

  5. JDBC连接MongoDB

    pom文件中导入驱动 <!-- MongoDB驱动 --> <dependency> <groupId>org.mongodb</groupId> &l ...

  6. 如何让vscode C++ 终端不再显示调试启动信息

    按照微软的官方文档(https://go.microsoft.com/fwlink/?LinkID=533484#vscode)配置好C++环境之后. 每次按F5都会在终端输出,但是会附加一串信息.例 ...

  7. http强制缓存、协商缓存、指纹ETag详解

    目录 实操目录及步骤 缓存分类 强制缓存 对比缓存 指纹 Etag 摘要及加密算法 缓存总结 每个浏览器都有一个自己的缓存区,使用缓存区的数据有诸多好处,减少冗余的数据传输,节省网络传输.减少服务器负 ...

  8. js笔记15

    DOM2动态创建节点 1.生成节点的方法 document.createElement("div") 2.插入节点的方法 父元素.appendChild(新节点) 在父节点的子节点 ...

  9. MIT6.828 Lab3 User Environments

    Lab3 这个实验分成了两个大部分. 1. PartA User Environments and Exception Handling kernel使用Env这个数据结构来trace每一个user ...

  10. Java基础之(一)——从synchronized优化看Java锁概念

    一.悲观锁和乐观锁概念 悲观锁和乐观锁是一种广义的锁概念,Java中没有哪个Lock实现类就叫PessimisticLock或OptimisticLock,而是在数据并发情况下的两种不同处理策略. 针 ...