简单题意

给定 \(n\) 个数对 \((h_i, v_i)\)。

求:

  1. 最长不上升子序列的长度。
  2. 对于每个 \(i\),分别求出包含数对 \((h_i, v_i)\) 的最长上升子序列的个数和最长不上升子序列的个数和的比。

数据范围:\(1 \leq n \leq 5 \times {10} ^ 4\),\(\forall 1 \leq i \leq n, 1 \leq h_i, v_i \leq {10}^9\)。

分析

问题 \(1\)

先考虑 \(O(n^2)\) 做法,本质与一维的相同。

定义 \(f_i\) 表示以数对 \((h_i, v_i)\) 结尾的最长不上升子序列的长度。

那么有

\[\begin{aligned}
f_i & = \max(1, \max\{ f_j + 1 \}), h_i \leq h_j \wedge v_i \leq v_j \\
\end{aligned}
\]

推出了式子后考虑优化,可以使用 \(\texttt{cdq}\) 分治。

对于一个区间 \(\texttt{[l, r]}\) 的转移。

\(\texttt{int mid = (l + r) >> 1}\)

先递归 \(\texttt{cdq(l, mid)}\)。

假设 \(\texttt{[l, mid]}\) 已经求出正确答案,即 \(f_{\texttt{l} \sim \texttt{r}}\) 都是正确的。

考虑如何转移,即 \(\texttt{[l, mid]}\) 对 \(\texttt{[mid + 1, r]}\) 的贡献。

与三维偏序一样,合并 \(h\),以 \(v\) 为下标把 \(f\) 存放在树状数组中。

只不过这里的 \(f\) 需要取最大值。

最后递归 \(\texttt{cdq(mid + 1, r)}\)。

因为是最后递归 \(\texttt{cdq(mid + 1, r)}\),所以询问不能真正合并,在结束时需要还原成原来的顺序。

问题 \(2\)

问题 \(1\) 解决后问题 \(2\) 就简单了。

只需要在树状数组中再维护一个统计个数数组即可。

  • 修改的值大于当前最大值就修改。
  • 修改的值等于当前最大值就累加。

因为求的是 包含 数对 \((h_i, v_i)\) 的最长不上升子序列的个数,所以还需要反着求一遍最长不上升子序列的个数。

两个数相乘再除以总数就是答案,前提是这个数对被包含在至少一个最长不上升子序列中。

温馨提示,个数可能会超过 \(\texttt{long long}\) 的范围,建议使用 \(\texttt{double}\)。

\(\texttt{code}\)

#include <cstdio>
#include <vector>
#include <utility>
#include <iostream>
#include <algorithm> int rint() {
int x = 0, fx = 1;
char c = getchar(); while (c < '0' || c > '9') {
fx ^= (c == '-');
c = getchar();
} while ('0' <= c && c <= '9') {
x = (x << 3) + (x << 1) + (c ^ 48);
c = getchar();
} if (!fx) {
return -x;
} return x;
} void read(int &x) {
x = rint();
} template<typename... Ts>
void read(int &x, Ts &...rest) {
read(x);
read(rest...);
} int Max(int u, int v) {
return (u > v) ? u : v;
} int Min(int u, int v) {
return (u < v) ? u : v;
} const int MAX_n = 5e4; int n, Time; // Time 是时间戳优化树状数组,可以不用清空
int dp1[MAX_n + 5]; // 正
int dp2[MAX_n + 5]; // 反
int vis[MAX_n + 5]; // 树状数组时间戳
int Bit[MAX_n + 5];
double bit[MAX_n + 5];
double num1[MAX_n + 5]; // 正
double num2[MAX_n + 5]; // 反 std::vector<int> lsh; // 离散化 v struct Missile {
int idx, h, v;
} q[MAX_n + 5];
Missile tmp[MAX_n + 5]; bool cmph1(Missile x, Missile y) {
return x.h > y.h;
} bool cmph2(Missile x, Missile y) {
return x.h < y.h;
} int lowbit(int x) {
return x & (-x);
} void add(int k, int x, double y) {
while (k <= n) {
if (vis[k] != Time) {
vis[k] = Time;
Bit[k] = x;
bit[k] = y;
} else {
if (x > Bit[k]) {
Bit[k] = x;
bit[k] = y;
} else if (x == Bit[k]) {
bit[k] += y;
}
} k += lowbit(k);
}
} std::pair<int, double> ask(int k) {
int resmax = 0;
double ressum = 0.0; while (k > 0) {
if (vis[k] == Time) {
if (Bit[k] > resmax) {
resmax = Bit[k];
ressum = bit[k];
} else if (Bit[k] == resmax) {
ressum += bit[k];
}
} k -= lowbit(k);
} return std::make_pair(resmax, ressum);
} void merge1(int L1, int R1, int L2, int R2) {
++Time;
int i = L1, j = L2; for (int k = L1; k <= R2; k++) {
tmp[k] = q[k];
} std::sort(q + L1, q + R1 + 1, cmph1);
std::sort(q + L2, q + R2 + 1, cmph1); while (i <= R1 || j <= R2) {
if (i <= R1 && (j > R2 || q[i].h >= q[j].h)) {
add((int)lsh.size() + 1 - q[i].v, dp1[q[i].idx], num1[q[i].idx]);
i++;
} else {
std::pair<int, double> now = ask((int)lsh.size() + 1 - q[j].v); if (now.first + 1 > dp1[q[j].idx]) {
dp1[q[j].idx] = now.first + 1;
num1[q[j].idx] = now.second;
} else if (now.first + 1 == dp1[q[j].idx]) {
num1[q[j].idx] += now.second;
} j++;
}
} for (int k = L1; k <= R2; k++) {
q[k] = tmp[k];
}
} void cdq1(int L, int R) {
if (L == R) {
return ;
} int Mid = (L + R) >> 1;
cdq1(L, Mid);
merge1(L, Mid, Mid + 1, R);
cdq1(Mid + 1, R);
} void merge2(int L1, int R1, int L2, int R2) {
++Time;
int i = L1, j = L2; for (int k = L1; k <= R2; k++) {
tmp[k] = q[k];
} std::sort(q + L1, q + R1 + 1, cmph2);
std::sort(q + L2, q + R2 + 1, cmph2); while (i <= R1 || j <= R2) {
if (i <= R1 && (j > R2 || q[i].h <= q[j].h)) {
add(q[i].v, dp2[q[i].idx], num2[q[i].idx]);
i++;
} else {
std::pair<int, double> now = ask(q[j].v); if (now.first + 1 > dp2[q[j].idx]) {
dp2[q[j].idx] = now.first + 1;
num2[q[j].idx] = now.second;
} else if (now.first + 1 == dp2[q[j].idx]) {
num2[q[j].idx] += now.second;
} j++;
}
} for (int k = L1; k <= R2; k++) {
q[k] = tmp[k];
}
} void cdq2(int L, int R) {
if (L == R) {
return ;
} int Mid = (L + R) >> 1;
cdq2(L, Mid);
merge2(L, Mid, Mid + 1, R);
cdq2(Mid + 1, R);
} signed main() {
n = rint(); for (int i = 1; i <= n; i++) {
read(q[i].h, q[i].v);
q[i].idx = i;
lsh.push_back(q[i].v);
} std::sort(lsh.begin(), lsh.end());
lsh.resize(std::unique(lsh.begin(), lsh.end()) - lsh.begin()); for (int i = 1; i <= n; i++) {
q[i].v = std::lower_bound(lsh.begin(), lsh.end(), q[i].v) - lsh.begin() + 1;
dp1[i] = dp2[i] = 1;
num1[i] = num2[i] = 1.0;
} cdq1(1, n); for (int i = n / 2; i >= 1; i--) {
std::swap(q[i], q[n + 1 - i]);
} cdq2(1, n);
int res = 0;
double sum = 0; for (int i = 1; i <= n; i++) {
if (dp1[i] > res) {
res = dp1[i];
sum = num1[i];
} else if (dp1[i] == res) {
sum += num1[i];
}
} printf("%d\n", res); for (int i = 1; i <= n; i++) {
if (dp1[i] + dp2[i] - 1 != res) {
printf("0.00000");
} else {
printf("%.5f", 1.0 * num1[i] * num2[i] / sum);
} putchar((i == n) ? '\n' : ' ');
} return 0;
}

「 题解 」P2487 [SDOI2011]拦截导弹的更多相关文章

  1. P2487 [SDOI2011]拦截导弹

    题目 P2487 [SDOI2011]拦截导弹 做\(SDOI\)有种想评黑的感觉,果然还是太弱了 做法 独立写(调)代码三个小时祭 简化题目:求二维最长不上升子序列及每个点出现在最长不上升子序列概率 ...

  2. bzoj 2244: [SDOI2011]拦截导弹 cdq分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 237  Solved: ...

  3. 【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)

    [BZOJ2244][SDOI2011]拦截导弹(CDQ分治) 题面 BZOJ 洛谷 题解 不难发现这就是一个三维偏序+\(LIS\)这样一个\(dp\). 那么第一问很好求,直接\(CDQ\)分治之 ...

  4. [BZOJ2244][SDOI2011]拦截导弹 CDQ分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MB  Special Judge Description 某国为了防御敌国的导弹 ...

  5. 【LG2481】[SDOI2011]拦截导弹

    [LG2481][SDOI2011]拦截导弹 题面 洛谷 题解 可以看出第一问就是一个有关偏序的\(LIS\),很显然可以用\(CDQ\)优化 关键在于第二问 概率\(P_i=\) \(总LIS数\) ...

  6. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  7. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  8. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  9. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

随机推荐

  1. 基于机器学习和TFIDF的情感分类算法,详解自然语言处理

    摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] ...

  2. 计算机网络-4-11-IP多播

    IP多播 IP多播的基本概念 与单播相比,在一对多的通信中,多播可以大大减少网络资源.在互联网上进行多播就叫做IP多播,IP多播所传送的分组需要使用多播IP地址.能够运行多播协议的路由器叫做多播路由器 ...

  3. mysql数据库主从复制教程

    mysql主从复制教程 架构规划: 192.168.201.150 master 主节点 192.168.201.154 slave 从节点 1. 修改mysql的配置文件(主节点,从节点都要修改) ...

  4. antd递归渲染左侧菜单

  5. 日志收集系统系列(三)之LogAgent

    一.什么是LogAhent 类似于在linux下通过tail的方法读日志文件,将读取的内容发给kafka,这里的tailf是可以动态变化的,当配置文件发生变化时,可以通知我们程序自动增加需要增加的配置 ...

  6. Standalone集群搭建和Spark应用监控

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/ 承接上一篇文档<Spark词频前十的统计练习> Spark on ...

  7. 获取iframe外的document

    在iframe中点击弹出层外部分弹出层消失,但是点击iframe外部分就操作不了弹出层了,被这个问题困扰了不少时间,今天得以解决,代码如下: 说明:$(top.document,document).c ...

  8. 移动端position:fixed 解决方案

    相信不少人做移动端项目的时候都会遇到position:fixed 的坑. 下面提供一个解决方法,不用引入任何其他的js库,纯css解决. 解决问题的关键就是:fixed元素内部必须嵌套一个positi ...

  9. 极客大挑战2019 http

    极客大挑战 http referer 请求头 xff 1.查看源码,发现secret.php 2.提示要把来源改成Sycsecret.buuoj.cn,抓包,添加Referer Referer:htt ...

  10. winform设置所有窗体统一图标

    class WindowHookerManager { static WindowHooker hooker = new WindowHooker(); public static void SetA ...