P2015
1 #include<iostream>
2 #include<cstdio>
3 #include<algorithm>
4 #include<cstring>
5 using namespace std;
6 const int maxn=200;
7 struct edge{
8 int to,nxt,dis;
9 }e[maxn];
10 int n,m;
11 inline int read()
12 {
13 int x;char c=getchar();
14 while(c<'0' or c>'9')c=getchar();
15 x=c-'0',c=getchar();
16 while(c>='0' and c<='9')x=x*10+c-'0',c=getchar();
17 return x;
18 }
19 int head[maxn],ecnt,f[maxn][maxn];
20 inline void addedge(int from,int to,int dis)
21 {
22 e[++ecnt]=(edge){to,head[from],dis},head[from]=ecnt;
23 }
24 int siz[maxn];
25 void dfs(int x,int fa)
26 {
27 for(int i=head[x];i;i=e[i].nxt)
28 {
29 int u=e[i].to;
30 if(u==fa)continue;
31 dfs(u,x);
32 siz[x]+=siz[u]+1;
33 for(int j=min(siz[x],m);j;j--)
34 for(int k=min(siz[u],j-1);k>=0;k--)
35 f[x][j]=max(f[x][j],f[x][j-k-1]+f[u][k]+e[i].dis);
36 //j表示保留j时,k全部遍历所有情况
37 }
38 }
39
40 int main()
41 {
42 n=read(),m=read();
43 for(int a,b,c,i=1;i<n;i++)
44 {
45 a=read(),b=read(),c=read();
46 addedge(a,b,c);addedge(b,a,c);
47 }
48 dfs(1,0);
49 printf("%d",f[1][m]);
50 return 0;
51 }
P2015的更多相关文章
- P2015 二叉苹果树
P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- P2015 二叉苹果树,树形dp
P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 【P2015】二叉苹果树 (树形DP分组背包)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...
- luogu P2015 二叉苹果树
嘟嘟嘟 这应该算一道树形背包吧,虽然我还是分不太清树形背包和树形dp的区别…… 首先dp[i][u][j] 表示在u的前 i 棵子树中,留了 j 条树枝时最大的苹果数量,而且根据题目描述,这些留下的树 ...
- 洛谷 P2015 二叉苹果树
老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...
- 【洛谷P2015】二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
随机推荐
- 6, java数据结构和算法: 栈的应用, 逆波兰计算器, 中缀表达式--> 后缀表达式
直接上代码: public class PolandCalculator { //栈的应用:波兰计算器: 即: 输入一个字符串,来计算结果, 比如 1+((2+3)×4)-5 结果为16 public ...
- HTML基本标签及语法
HTML简介 什么是HTML 本文素材来源于黑马程序员Pink老师 HTML 指的是超文本标记语言(Hyper Text Markup Language) ,它是用来描述网页的一种语言. HTML 不 ...
- Webflux(史上最全)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- 入门实践丨如何在K3s上部署Web应用程序
在本文中,我们将使用Flask和JavaScript编写的.带有MongoDB数据库的TODO应用程序,并学习如何将其部署到Kubernetes上.这篇文章是针对初学者的,如果你之前没有深度接触过Ku ...
- 手写Spring,定义标记类型Aware接口,实现感知容器对象
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 同事写的代码,我竟丝毫看不懂! 大佬的代码,就像 "赖蛤蟆泡青蛙,张的丑玩 ...
- 7、resync实时备份
sersync+rsync(增量,无差异备份),resync支持多线程,效果比inotify更好,配置思想和inotify很相似 7.1.在备份服务器上安装并配置rsync服务,实现nfs共享目录,可 ...
- 9.10、mysql进程、状态在线修改参数重要知识
1.-e :改参数表示不用登陆mysql就可以使用mysql的命令,有利于于加管道符对数据进行处理: mysql -uroot -p123456 -e "show databases;&qu ...
- JPA事务中的异常最后不也抛出了,为什么没被catch到而导致回滚?
上周,我们通过这篇文章<为什么catch了异常,但事务还是回滚了?>来解释了,之前test4为什么会回滚的原因. 但还是收到了很多没有理解的反馈,主要是根据前文给出的线索去跟踪,是获得到了 ...
- Nginx:Nginx的安装
Nginx安装 首先安装依赖 #安装Nginx需要gcc openssl-devel pcre-devel zlib-devel依赖 yum -y install gcc openssl-devel ...
- 查看python的安装版本,位数及安装路径
一.想要查看ubuntu中安装的Python路径 方法一:whereis python (用来快速查找任何文件,是一个文件搜索命令,与locate的功能一样.执行whereis python 会将所有 ...