P2015
1 #include<iostream>
2 #include<cstdio>
3 #include<algorithm>
4 #include<cstring>
5 using namespace std;
6 const int maxn=200;
7 struct edge{
8 int to,nxt,dis;
9 }e[maxn];
10 int n,m;
11 inline int read()
12 {
13 int x;char c=getchar();
14 while(c<'0' or c>'9')c=getchar();
15 x=c-'0',c=getchar();
16 while(c>='0' and c<='9')x=x*10+c-'0',c=getchar();
17 return x;
18 }
19 int head[maxn],ecnt,f[maxn][maxn];
20 inline void addedge(int from,int to,int dis)
21 {
22 e[++ecnt]=(edge){to,head[from],dis},head[from]=ecnt;
23 }
24 int siz[maxn];
25 void dfs(int x,int fa)
26 {
27 for(int i=head[x];i;i=e[i].nxt)
28 {
29 int u=e[i].to;
30 if(u==fa)continue;
31 dfs(u,x);
32 siz[x]+=siz[u]+1;
33 for(int j=min(siz[x],m);j;j--)
34 for(int k=min(siz[u],j-1);k>=0;k--)
35 f[x][j]=max(f[x][j],f[x][j-k-1]+f[u][k]+e[i].dis);
36 //j表示保留j时,k全部遍历所有情况
37 }
38 }
39
40 int main()
41 {
42 n=read(),m=read();
43 for(int a,b,c,i=1;i<n;i++)
44 {
45 a=read(),b=read(),c=read();
46 addedge(a,b,c);addedge(b,a,c);
47 }
48 dfs(1,0);
49 printf("%d",f[1][m]);
50 return 0;
51 }
P2015的更多相关文章
- P2015 二叉苹果树
P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- P2015 二叉苹果树,树形dp
P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 【P2015】二叉苹果树 (树形DP分组背包)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...
- luogu P2015 二叉苹果树
嘟嘟嘟 这应该算一道树形背包吧,虽然我还是分不太清树形背包和树形dp的区别…… 首先dp[i][u][j] 表示在u的前 i 棵子树中,留了 j 条树枝时最大的苹果数量,而且根据题目描述,这些留下的树 ...
- 洛谷 P2015 二叉苹果树
老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...
- 【洛谷P2015】二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
随机推荐
- th:insert、th:replace、th:include抽取和引用页面公共片段、传参等
一.抽取公共片段 th:fragment 给片段命名 将公共片段抽取出来,并在顶级标签内使用th:fragment给该片段命名. 例如:将公共片段抽取出来放到comment/bar.html中: & ...
- 【SQLite】教程04-SQLite数据类型
SQLite 存储类 每个存储在 SQLite 数据库中的值都具有以下存储类之一: 存储类 描述 NULL 值是一个 NULL 值. INTEGER 值是一个带符号的整数,根据值的大小存储在 1.2. ...
- SQL中的分组之后TOPN问题
SQL分组查询然后取每一组的前N条数据 由于SQL的不同的数据库SQL的语法有些略微不同,所以我们这里采用MySQL展示. 创建表 create table person( id ...
- docker-compose 部署 Apollo 自定义环境
Apollo 配置中心是什么: Apollo是携程框架部门研发的开源配置管理中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性. ...
- DOS命令行(6)——Windows网络状态及用户管理
ipconfig --查看计算机中适配器的TCP/IP配置信息 命令格式: ipconfig [/allcompartments] [/? | /all | /renew [adapter] | /r ...
- Java-IO流的继承结构
一 IO流的继承结构如下 二 字节流 1.InputStream(字节流读取数据),为抽象类,不可创建对象:其具体实现需要通过子类FileInputStream(读取文件数据).BufferedI ...
- 【Python】(六)Python数据类型-列表和元组,九浅一深,用得到
您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦. 本文分十个章节介绍数据类型中的列表(list)和元组(tuple),从使用说到底层实现,包您满意 干货满满,建议收藏,需要用到时常看看. 小伙伴们 ...
- MySQL 到 ES 数据实时同步技术架构
MySQL 到 ES 数据实时同步技术架构 我们已经讨论了数据去规范化的几种实现方式.MySQL 到 ES 数据同步本质上是数据去规范化多种实现方式中的一种,即通过"数据迁移同步" ...
- Unity 按空格一直触发Button点击事件的问题
#解决 这是由于Button中Navigation(导航)功能导致的. 将导航设置为None即可. 真是气死我了,我说为什么点击完按钮界面,按空格就一直触发界面,难搞
- Mongo3基础操作
由于3.X的文档是在3.X当前最新版本前记录,所以这里列出一些常用的操作,比如建立库,删除库,等一些格式,然后在描述开启远程和创建用户的一些区别,以及讲解2.X和3.X配置文件区别. 1. Mongo ...