[考试总结]noip8
又是一个题的正解都没有打出来的一天
但是自己独创了 \(lca\) 的求法, 然而如果去掉求 \(lca\) 的过程,就不会 \(TLE\) 了。 \(\huge{\text{囧}}\)
然后就是对性质不是十分熟悉。。。
\(T1\) 的欧拉路我是真的忘干净了,别说什么性质了,提起来只还记得一个一笔画。。。
然后还有就是单调性的误判,然而拿了很多分,但是写了一个错解。。。
超级树上花费了不少时间,然后什么都没有打出来。。。
骗了5分 \(\huge{\text{囧}}\)
对于最后一个题目,自己估计的复杂度为 \(\mathcal O(nm)\)。
然而因为数据过水
过了一批。。。。
然而我的独创 \(lca\) 求法还是 \(TLE\) 了
所以对于这批数据,不求 \(lca\) 才是最快的解法。。。。
T1
这道题目其实就是考察欧拉路,欧拉路的很多很多性质记住之后就能秒掉这个题目。。。
题目的要求其实就是 把每条边加倍,然后将这个图变成欧拉路就行了
然后就是不太难的排列组合问题
考虑几个情况。
- 去掉两个自环。
- 去掉一个自环和一条边。
- 去掉两个相连的边。
然后就是判断这个图是否是 边联通图。。。
这个图和点联通图不是很一样,即使点不全部联通这个图也可能是边联通图
所以可以考虑从一个度不为 \(0\) 的点开始拓扑,然后如果发现有的点没有到过并且存在度或者是存在自环,那么就可以输出 \(0\) 走人了。
对于排列:
\]
T2
其实式子很简单,就是数列分块的思想。。
\]
然后就可以在线性再乘上根号的复杂度去搞了。
T3
我是真想不出来。。。
就是用 \(f_{i,j}\) , \(i\) 是深度 ,\(j\) 是枚举的 \(l\) \(r\) 边的个数。。。。
方程五个就不放了。。。
T4
先预处理出来所要的值。
然后对于没一个询问向上爬取。
先使两个点深度相同。
然后再一起向上爬取。。。
就这。。。
然而这并不是正解。。。
正解还是要 \(lca\) 的,然后向上处理前缀和。
差分也行。。。
复杂度稳定。。。
[考试总结]noip8的更多相关文章
- 全网独家MongoDB Certified DBA Associate考试认证视频
该视频意在让所有学员一次通过考试,避免重复考试而承担的巨额考试费用! 目前MongDB发展迅猛,有赶超mysql,和oracle看齐的苗头.在这个时候MongoDB也适时的推出了官方的认证考试&quo ...
- 记lrd的高二上学期第五次调研考试
河北某某中学的调研考试其实是很好玩的经历呢.可惜没有太多机会了. 背景: NOIP2016回来之后没有好好学文化课-.自习能翘就翘了,衡中特产学案自助没有好好写(说来我好像从来没被老师查到过,上课写学 ...
- 1009: [HNOI2008]GT考试
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数\(X_1X_ ...
- mysql练习题-查询同时参加计算机和英语考试的学生的信息-遁地龙卷风
(-1)写在前面 文章参考http://blog.sina.com.cn/willcaty. 针对其中的一道练习题想出两种其他的答案,希望网友给出更多回答. (0) 基础数据 student表 +-- ...
- js封装用户选项传递给Servlet之考试系统二
<%@ page language="java" import="java.util.*" contentType="text/html; ch ...
- js动态生成选项之考试系统(一)
<%@ page language="java" import="java.util.*" pageEncoding="utf-8"% ...
- 分享一个LiteDB做的简单考试系统辅助工具
凌晨,被安排在公司值班,因为台风“灿鸿”即将登陆,风力太大,办公楼,车间等重要部分需要关注.所以无聊,那就分享一下,今天给朋友临时做的一个小的考试系统辅助工具吧.其实非常小,需求也很简单,但是可以根据 ...
- CCF考试
第八次CCF考试记录 代码还不知道对不对,过两天出成绩. 成绩出来了,310分. 100+100+100+10+0: 考试13:27开始,17:30结束,提交第4题后不再答题,只是检查前四题的代码 第 ...
- PAT 1041. 考试座位号(15)
每个PAT考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位.正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系统会显示该考生的考试座位号码,考试时考生需要换到考试座 ...
随机推荐
- 『言善信』Fiddler工具 — 11、Fiddler中Composer功能详解
目录 1.Composer功能介绍 2.Composer界面说明 3.使用方式 (1)自定义Request请求 (2)Composer重复发送请求 (3)Composer篡改请求数据 1.Compos ...
- 深入解读Redis分布式锁
之前码甲哥写了两篇有关线程安全的文章: 你管这叫线程安全? .NET八股文:线程同步技术解读 分布式锁是"线程同步"的延续 最近首度应用"分布式锁",现在想想, ...
- 【NX二次开发】常用的标准对话框
1.uc1601 单按钮模态对话框 1 //来自"王牌飞行员_里海"的测试源码(qq群753801561) 2 extern DllExport void ufusr(char * ...
- 【UG二次开发】获取系统信息UF_ask_system_info
获取系统信息可以使用这个函数UF_ask_system_info 下面是例子: 1 extern DllExport void ufsta(char *param, int *returnCode, ...
- windows 7系统安装与配置Tomcat服务器环境
windows 7系统安装与配置Tomcat服务器环境 学习了一个月的java基础,终于要迈向java web领域.学习java web开发就离不开服务器的支持,由于本人是菜鸟,只好求助度娘谷哥.在此 ...
- centos 7 iotop 安装
安装指令:yum -y install iotop 指定查看aubunt 用户的读写状态:iotop -u aubunt -P -k -t 允许在非交互模式下每隔3秒刷新一次,只刷新6次:iotop ...
- 【模拟7.29】大佬(概率期望DP)
首先根据数据范围,可以判断基本上是n^2的复杂度 通过分析我们发现每一次都可以从m个数中任意选,既然任意选,那么此时的概率的分母就是不变的,然而题中涉及的是某一段的最大值,所以我们按套路假设 f[i] ...
- 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows
题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...
- 透彻理解USB总线应用之枚举
Hello,大家好,今天我们来讨论一下USB总线中的枚举(Enumeration),首先简单介绍一下USB系统的基本架构,它由USB主机.USB设备与USB电缆(本文忽略它)组成,如下图所示: 最常见 ...
- 13、windows下卸载oracle
13.1.停用oracle服务: 进入计算机管理,在服务中,找到oracle开头的所有服务,右击选择停止: 13.2.删除oracle: 在开始菜单中,找到oracle->Universal I ...