$$\begin{eqnarray}&c[k] = \sum_{i}^{n}a[i]b[i-k] \\&c[k] = \sum_{i}^{n}a[n-i]b[i-k] (倒序保存a) \\&c[n-k]= \sum_{i}^{n}a[n-i]b[i-k] (倒序保存c) \\&通过卷积 o (nlog(n))得到c\end{eqnarray}$$

#include<bits/stdc++.h>
using namespace std;
const int N=135000;
const double Pi=acos(-1.0);
int n,m;
inline int read()
{
int s=0,w=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
return s*w;
}
inline int _min(int a,int b){return a<b?a:b;}
inline int _max(int a,int b){return a>b?a:b;}
struct CP
{
double x,y;
CP (double xx=0,double yy=0)
{
x=xx;y=yy;
}
CP operator + (const CP &B) const
{
return CP(x+B.x,y+B.y);
}
CP operator - (const CP &B) const
{
return CP(x-B.x,y-B.y);
}
CP operator * (const CP &B) const
{
return CP(x*B.x-y*B.y,x*B.y+y*B.x);
}
}f[N<<1];
int tr[N<<1];
void FFT(CP *f,bool flag)
{
for(int i=0;i<n;i++)
{
if(i<tr[i])
swap(f[i],f[tr[i]]);
}
for(int p=2;p<=n;p<<=1)
{
int len=p>>1;
CP tG(cos(2*Pi/p),sin(2*Pi/p));
if(flag==0)
{
tG.y*=-1;
}
for(int k=0;k<n;k+=p)
{
CP buf(1,0);
for(int l=k;l<k+len;l++)
{
CP tt=buf*f[len+l];
f[len+l]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tG;
}
}
}
}
int main()
{
n=read();m=n;
for(int i=0;i<n;i++)
{
f[n-i].x=read();
f[i].y=read();
}
int tmp=n;
for(n=1;n<=tmp*2;n<<=1);
for(int i=0;i<n;i++)
{
tr[i]=(tr[i>>1]>>1)|(i&1?(n>>1):0);
}
FFT(f,1);
for(int i=0;i<n;i++)
{
f[i]=f[i]*f[i];
}
FFT(f,0);
//存的是c[n-k],0<=k<=n-1,1<=n-k<=n,所以输出1~n
for(int i=m;i>=1;i--)
{
printf("%d\n",(int)(f[i].y/n/2+0.49));
}
return 0;
}

B. 2194: 快速傅立叶之二解题报告的更多相关文章

  1. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  2. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  3. 【BZOJ】2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...

  4. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  5. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  6. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  7. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  8. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  9. bzoj 2194: 快速傅立叶之二【NTT】

    看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...

随机推荐

  1. JBoss 5.x/6.x 反序列化漏洞(CVE-2017-12149)

    检测

  2. Mybatis学习笔记导航

    Mybatis小白快速入门 简介 本人是一个Java学习者,最近才开始在博客园上分享自己的学习经验,同时帮助那些想要学习的uu们,相关学习视频在小破站的狂神说,狂神真的是我学习到现在觉得最GAN的老师 ...

  3. 洛谷P1377题解

    题面 首先他叫我们建一颗笛卡尔树,所以我们就建一颗笛卡尔树. 然后他说要生成序列中最小的.想到笛卡尔树的一条性质:左<根<右.但是根节点必须先插进去.他的两个儿子用贪心的思想就知道是先选左 ...

  4. ubuntu安装qemu

    ubuntu安装qemu ubtuntu编译安装qemu 5.2.0,apt-get安装的版本过于老旧. 环境:ubuntu 18.04. wget https://download.qemu.org ...

  5. 算法竞赛中的常用JAVA API:PriorityQueue(优先队列)(转载)

    算法竞赛中的常用JAVA API:PriorityQueue(优先队列) PriorityQueue 翻译过来就是优先队列,本质是一个堆, 默认情况下堆顶每次都保留最小值,每插入一个元素,仍动态维护堆 ...

  6. 探讨UE4中的UBT和UHT

    前言 UBT和UHT是编译工具,谁定义的呢,虚幻引擎自己定义的,拿来做什么呢,UBT和UHT是UE4用来简化多平台编译,去除用户自定义平台编译项目的操作 我们写的UE4代码不是标准的C++代码,是基于 ...

  7. 《手把手教你》系列技巧篇(十八)-java+ selenium自动化测试-元素定位大法之By css中卷(详细教程)

    1.简介 按计划今天宏哥继续讲解倚天剑-css的定位元素的方法:ID属性值定位.其他属性值定位和使用属性值的一部分定位(这个类似xpath的模糊定位). 2.常用定位方法(8种) (1)id(2)na ...

  8. SpringMVC学习01(什么是SpringMVC)

    1.什么是SpringMVC 1.1 回顾MVC 1.1.1 什么是MVC MVC是模型(Model).视图(View).控制器(Controller)的简写,是一种软件设计规范. 是将业务逻辑.数据 ...

  9. 【笔记】使用PCA对数据进行降噪(理解)

    使用PCA对数据进行降噪(使用手写数字实例) (在notebook中) 加载库并制作虚拟的数据并进行绘制 import numpy as np import matplotlib.pyplot as ...

  10. 007 GMII、SGMII和SerDes的区别和联系

    一.GMII和SGMII的区别和联系 GMII和SGMII区别,上一篇已经介绍了,这一篇重点介绍SGMII和SerDes区别. GMII和SGMII GMII 在MII接口基础上提升了数据位宽和Clo ...