题解 [NOI2014]购票
题目大意
有一个 \(n\) 个点的树,每个点有三个值 \(p_u,q_u,l_u\) ,现在可以从 \(u\) 走到点 \(v\) 当且仅当 \(v\) 是 \(u\) 的祖先并且 \(\text{dis}(u,v)\le l_u\) ,这样的花费为 \(\text{dis}(u,v)\times p_u+q_u\) 。问每个点到 \(1\) 所需的最小总花费。
\(n\le 2\times 10^5\) ,保证答案在 \(\text{long long}\) 范围内。
思路
还说还是看到 \(\text{Qiuly}\) 做这道题才做的,想要练习一下自己本来就菜的一批的斜率优化,结果发现自己除了斜率优化啥也不会了。。。
我们假设 \(f_u\) 为点 \(u\) 的答案,可以得到转移式:
\]
\]
然后我们就发现这个式子可以斜率优化了。假设对于点 \(u\) 存在点 \(j\) 比点 \(k\) 更优,可以得到:
\]
\]
然后我们发现这个东西我们可以维护一个下凸壳,但是因为 \(p_i\) 并不单调,所以我们直接在凸壳上面二分找到第一个斜率不大于 \(p_i\) 的点就好了。
但是我们发现我们这个东西其实是一棵树,我们显然没办法直接套这个做法。我们先考虑在区间上的做法,再考虑拓展到树上。
我们发现其实我们可以 \(\text{cdq}\) 分治解决这个问题,即每次先递归解决左区间,然后在左区间的凸壳上考虑对于右区间的贡献,然后继续递归解决右区间。可以发现这样做的时间复杂度为 \(\Theta(n\log^2 n)\) 的。
考虑拓展到树上。我们发现其实我们可以用淀粉质解决这个问题,每次我们找到当前子树的重心,假设设为 \(x\) ,我们先递归解决该子树除了 \(x\) 的子树的部分(下面设为 \(S_1\)),那么我们可以考虑 \(S_1\) 对 \(x\) 的子树(下面设为 \(S_2\))产生的贡献,同上文,然后继续递归解决 \(S_2\)。
考虑分析时间复杂度,可以想到每个点的均摊时间复杂度就是点分树上的深度乘上对于一个点更新操作的时间,即为 \(\Theta(\log^2n)\) ,所以总时间复杂度即为 \(\Theta(n\log^2 n)\) 。
有几个细节需要提醒一下,就是说找重心的时候要找最接近于当前子树的根的点,因为这样才能保证不会陷入死循环,具体为什么自己实现一下就可以明白了。另外一个就是这道题目要开 \(\text{long long}\),而且极大值不能赋小了。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define INF 0x7f7f7f7f7f7f7f
#define Int register int
#define int long long
#define MAXN 200005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,t,toop = 1,f[MAXN],p[MAXN],q[MAXN],l[MAXN],fa[MAXN],to[MAXN],wei[MAXN],nxt[MAXN],dis[MAXN],head[MAXN];
void Add_Edge (int u,int v,int w){to[++ toop] = v,wei[toop] = w,nxt[toop] = head[u],head[u] = toop;}
void getdis (int u){for (Int i = head[u];i;i = nxt[i]) dis[to[i]] = dis[u] + wei[i],getdis (to[i]);}
int top,sta[MAXN];double sl[MAXN];//储存每个点到下一个点的斜率
double Slope (int x,int y){return (f[y] - f[x]) * 1.0 / (dis[y] - dis[x]);}
void ins (int x){
while (top > 1 && sl[top - 1] <= Slope (sta[top],x)) -- top;
sta[++ top] = x,sl[top - 1] = Slope (sta[top - 1],x),sl[top] = -INF;
}
int query (double num){
int l = 1,r = top,ans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (sl[mid] <= num) ans = mid,r = mid - 1;
else l = mid + 1;
}
return sta[ans];
}
int root,mxsiz,siz[MAXN];bool vis[MAXN];//淀粉质需要的东西
void findroot (int u,int SZ){
siz[u] = 1;int mx = 0;
for (Int i = head[u];i;i = nxt[i]) if (!vis[to[i]]) findroot (to[i],SZ),siz[u] += siz[to[i]],mx = max (mx,siz[to[i]]);
mx = max (mx,SZ - siz[u]);
if (mx <= mxsiz) mxsiz = mx,root = u;
}
int sum,pot[MAXN];
void getpoint (int u){
pot[++ sum] = u;
for (Int i = head[u];i;i = nxt[i]) if (!vis[to[i]]) getpoint (to[i]);
}
bool cmp (int x,int y){return dis[x] - l[x] > dis[y] - l[y];}//按照可以到的祖先深度排序
void work (int now,int SZ){
if (SZ == 1) return ;
mxsiz = INF,findroot (now,SZ);int x = root;
for (Int i = head[x];i;i = nxt[i]) vis[to[i]] = 1,SZ -= siz[to[i]];
work (now,SZ),sum = 0;
for (Int i = head[x];i;i = nxt[i]) getpoint (to[i]);
sort (pot + 1,pot + sum + 1,cmp);int a = x;top = 0;
for (Int i = 1;i <= sum;++ i){
int u = pot[i];
while (a != fa[now] && dis[a] >= dis[u] - l[u]) ins (a),a = fa[a];
if (top){
int k = query (p[u]);
f[u] = min (f[u],f[k] + (dis[u] - dis[k]) * p[u] + q[u]);
}
}
for (Int i = head[x];i;i = nxt[i]) work (to[i],siz[to[i]]);
}
signed main(){
read (n,t);
for (Int i = 2,val;i <= n;++ i) read (fa[i],val,p[i],q[i],l[i]),Add_Edge (fa[i],i,val),f[i] = INF;
getdis (1),work (1,n);
for (Int i = 2;i <= n;++ i) write (f[i]),putchar ('\n');
return 0;
}
题解 [NOI2014]购票的更多相关文章
- [BZOJ3672][UOJ#7][NOI2014]购票
[BZOJ3672][UOJ#7][NOI2014]购票 试题描述 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. ...
- 【BZOJ 3672】 3672: [Noi2014]购票 (CDQ分治+点分治+斜率优化)**
3672: [Noi2014]购票 Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国 ...
- 【BZOJ3672】[Noi2014]购票 树分治+斜率优化
[BZOJ3672][Noi2014]购票 Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- $NOI2014$ 购票(斜率优化 点分治)
\(NOI2014\)购票 哇终于可以碰电脑了赶快切些火题找找感觉. 拿到这道题的时候发现简单的斜率优化推一推可以秒掉平方做法,然后一条链也可以做. 然后呢... 卧槽这个在一棵树上怎么办啊. 大力\ ...
- bzoj 3672: [Noi2014]购票 树链剖分+维护凸包
3672: [Noi2014]购票 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 480 Solved: 212[Submit][Status][D ...
- BZOJ 3672: [Noi2014]购票( 树链剖分 + 线段树 + 凸包 )
s弄成前缀和(到根), dp(i) = min(dp(j) + (s(i)-s(j))*p(i)+q(i)). 链的情况大家都会做...就是用栈维护个下凸包, 插入时暴力弹栈, 查询时就在凸包上二分/ ...
- bzoj千题计划251:bzoj3672: [Noi2014]购票
http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...
- [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治
3672: [Noi2014]购票 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1749 Solved: 885[Submit][Status][ ...
随机推荐
- Linux的基础——虚拟机的克隆
1.虚拟机的安装 虚拟机的安装在另一个文档 安装jdk(在另外一个文档中) 2.虚拟机的克隆 准备工作:一台装有Linux系统的主机(已经配置好jdk) 选择主机进行克隆 注意:这里一定要选择创建完整 ...
- 在CentOs7源码安装mysql-5.6.35单实例数据库
首先安装依赖包,避免在安装过程中出现问题 [root@bogon liuzhen]# yum -y install gcc gcc-c++[root@bogon liuzhen]# yum -y in ...
- Python面向对象编程及内置方法
在程序开发中,要设计一个类,通常需要满足以下三个要求: [1]类名 这类事物的名字,满足大驼峰命名法 [2]属性 这类事物具有什么样的特征 [3]方法 这类事物具有什么样的行为 定义简单的类: 定义只 ...
- Linux/CentOS基础命令1
一.系统相关运行命令1.系统关机命令:shutdown# shutdown 关机 Shutdown scheduled for Fri 2019-03-29 11:36:45 CST, use 'sh ...
- 20210804 noip30
考场 第一眼感觉 T1 是状压 DP,弃了.T2 好像也是 DP???看上去 T3 比较可做. 倒序开题.T3 暴力是 \(O(pn\log p)\)(枚举 \(x\),二分答案,看能否分成合法的不超 ...
- ELK学习之Logstash+Kafka篇
上一篇介绍了一下Logstash的数据处理过程以及一些基本的配置功能,同时也提到了Logstash作为一个数据采集端,支持对接多种输入数据源,其中就包括Kafka.那么这次的学习不妨研究一下Logst ...
- Linux内核下包过滤框架——iptables&netfilter
iptables & netfilter 1.简介 netfilter/iptables(下文中简称为iptables)组成Linux内核下的包过滤防火墙,完成封包过滤.封包重定向和网络地址转 ...
- CSP-J 2021 游记
今年是本人第一次参加CSP组的竞赛. Day 0 晚上复习了几套初赛试卷,做到晚上十点多结束.其实暑假已经做过不少了. Day 1 早上继续复习noip历年真题,在洛谷有题上面自己做题,一向只能考十几 ...
- PHP中使用if的时候为什么建议将常量放在前面?
在某些框架或者高手写的代码中,我们会发现有不少人喜欢在进行条件判断的时候将常量写在前面,比如: if(1 == $a){ echo 111; } 这样做有什么好处呢?我们假设一个不小心的粗心大意,少写 ...
- html jquey的选择器checkbox,select
1 判断checkbox是否选中 用到 jquery的 is方法 jquery: <div id="divId" class="divTable"> ...