Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一章介绍了如何估计time-varying 下的causal effect.

21.1 The g-formula for time-varying treatments

求静态的\(\mathbb{E}[Y^{\bar{a}}]\),

\[\sum_l \mathbb{E}[Y|\bar{A}=\bar{a}, \bar{L}=\bar{l}]\prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}).
\]

至于动态的\(Y^g\),总感觉书上给的公式缺了一块.

21.2 IP weighting for time-varying treatments

同样是静态的:

\[W^{\bar{A}} = \prod_{k=0}^K \frac{1}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)},\\
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]

21.3 A doubly robust estimator for time-varying treatments

一种doubly robust的估计方法.

21.4 G-estimation for time-varying treatments

\[H_k(\psi^{\dagger}) = Y - \sum_{j=k}^K A_j \gamma_j(\bar{A}_{j-1}, \bar{L}_{j}, \psi^{\dagger}).
\]

通过下式来估计:

\[\mathrm{logit}\:\mathrm{Pr} [A_k=1|H_k(\psi^{\dagger}), \bar{L}_k, \bar{A}_{k-1}] = \alpha_0 + \alpha_1 H_k(\psi^{\dagger}) + \alpha_2 W_k.
\]

21.5 Censoring is a time-varying treatment

当censoring也是一个time-varying变量的时候.

\[\sum_{\bar{l}} \mathbb{E}[Y|\bar{A}=a, \bar{C}=\bar{0}, \bar{L}=\bar{l}] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, c_{k-1}=0, \bar{l}_{k-1}).
\]
\[W^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]

Fine Point

Treatment and covariate history

Representations of the g-formula

G-estimation with a saturated structural nested model

Technical Point

The g-formula density for static strategies

The g-null paradox

A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments

Relation between marginal structural models and structural nested models (Part II)

A closed form estimator for linear structural nested mean models

Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model

Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章

  1. 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior

    原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...

  2. Chapter 7:Statistical-Model-Based Methods

    作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...

  3. MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables

    之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...

  4. 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods

    2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...

  5. Thinking in Java from Chapter 21

    From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...

  6. Chapter 20: Diagnostics

    WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...

  7. ESL翻译:Linear Methods for Regression

    chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...

  8. 《Think in Java》20 21(并发)

    chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. acquire, acre, across

    acquire An acquired taste is an appreciation [鉴赏] for something unlikely to be enjoyed by a person w ...

  2. 【leetcode】633. Sum of Square Numbers(two-sum 变形)

    Given a non-negative integer c, decide whether there're two integers a and b such that a2 + b2 = c. ...

  3. Oracle中建表及表操作

    一.创建表 Oracle中的建表语句:create table 表名( 字段名1 数据类型 列属性,字段名2 数据类型 列属性,...... ) 如:创建表OA_DM.DM_GY_USER https ...

  4. 用UIScrollview做一个网易scrollviewbar

    效果如上,点击出现的图片是用UIImageview添加上的,比较简陋 我用了两种方法,第一种是直接在viewcontroller里面写代码 第二种是用了一个类来封装这个scrollviewbar 对外 ...

  5. Spring Boot下使用拦截器

    Spring Boot对于原来在配置文件配置的内容,现在全部体现在一个类中,该类需要继承自WebMvcConfigurationSupport类,并使用@Configuration进行注解,表示该类为 ...

  6. 解决在进行socket通信时,一端输出流OutputStream不关闭,另一端输入流就接收不到数据

    输出的数据需要达到一定的量才会向另一端输出,所以在传输数据的末端添加 \r\n 可以保证不管数据量是多少,都立刻传输到另一端.

  7. 【C/C++】链表

    #include <bits/stdc++.h> using namespace std; struct node { int data; // 数据 node* next; // 指针 ...

  8. 启动Springboot 报错 Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as a fallback. Sat Jan 12 15:50:25 CST 2019 There was an unexpected error (type=Not

    解决方案:http://www.cnblogs.com/michaelShao/p/6675186.html

  9. mrctf2020_shellcode_revenge(可见符shellcode)!!!!

    第一次碰到这种题目,需要用可见符shellcode来做 题目我就不放了,我认为网上大佬会比我说的更加详细 [原创]纯字母shellcode揭秘-软件逆向-看雪论坛-安全社区|安全招聘|bbs.pedi ...

  10. 【二进制】【WP】MOCTF逆向题解

    moctf 逆向第一题:SOEASY 这个是个 64 位的软件,OD 打不开,只能用 IDA64 打开,直接搜字符串(shift+F12)就可以看到 moctf 逆向第二题:跳跳跳 这个题当初给了初学 ...