Chapter 21 G-Methods for Time-Varying Treatments
- 21.1 The g-formula for time-varying treatments
- 21.2 IP weighting for time-varying treatments
- 21.3 A doubly robust estimator for time-varying treatments
- 21.4 G-estimation for time-varying treatments
- 21.5 Censoring is a time-varying treatment
- Fine Point
- Technical Point
- The g-formula density for static strategies
- The g-null paradox
- A doubly estimator of for time-varying treatments
- Relation between marginal structural models and structural nested models (Part II)
- A closed form estimator for linear structural nested mean models
- Estimation of after g-estimation of a structural nested mean model
这一章介绍了如何估计time-varying 下的causal effect.
21.1 The g-formula for time-varying treatments
求静态的\(\mathbb{E}[Y^{\bar{a}}]\),
\]
至于动态的\(Y^g\),总感觉书上给的公式缺了一块.
21.2 IP weighting for time-varying treatments
同样是静态的:
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]
21.3 A doubly robust estimator for time-varying treatments
一种doubly robust的估计方法.
21.4 G-estimation for time-varying treatments
\]
通过下式来估计:
\]
21.5 Censoring is a time-varying treatment
当censoring也是一个time-varying变量的时候.
\]
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]
Fine Point
Treatment and covariate history
Representations of the g-formula
G-estimation with a saturated structural nested model
Technical Point
The g-formula density for static strategies
The g-null paradox
A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments
Relation between marginal structural models and structural nested models (Part II)
A closed form estimator for linear structural nested mean models
Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model
Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章
- 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior
原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...
- Chapter 7:Statistical-Model-Based Methods
作者:桂. 时间:2017-05-25 10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...
- MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables
之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...
- 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods
2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...
- Thinking in Java from Chapter 21
From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...
- Chapter 20: Diagnostics
WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...
- ESL翻译:Linear Methods for Regression
chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...
- 《Think in Java》20 21(并发)
chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...
- 39. Volume Rendering Techniques
Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...
随机推荐
- LeetCode两数之和
LeetCode 两数之和 题目描述 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是 ...
- 外网无法访问hdfs文件系统
由于本地测试和服务器不在一个局域网,安装的hadoop配置文件是以内网ip作为机器间通信的ip. 在这种情况下,我们能够访问到namenode机器, namenode会给我们数据所在机器的ip地址供我 ...
- 数仓day01
1. 该项目适用哪些行业? 主营业务在线上进行的一些公司,比如外卖公司,各类app(比如:下厨房,头条,安居客,斗鱼,每日优鲜,淘宝网等等) 这类公司通常要针对用户的线上访问行为.消费行为.业务操作行 ...
- ES5中改变this指向的三种方法
ES5中提供了三种改变函数中this指针指向的方法,分别如下 1.call() var obj = {username:"孙悟空"}; //没有任何修饰的调用函数,函数中的this ...
- elasticSearch索引库查询的相关方法
package com.hope.es;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.c ...
- fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to connect to github.com port 443: Timed out
今天使用git push的时候提示"fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to conne ...
- SpringBoot中使用JUnit4(入门篇)
添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>sp ...
- Mysql报错合集
目录 一.链接报错 客户端连接mysql出错 链接客户端出错 交互登陆mysql出现warning警告Using a password 导入数据到数据库报错ERROR 1050 登陆数据库提示-bas ...
- shell脚本 监控网卡信息
一.简介 源码地址 日期:2018/6/22 介绍:显示实时输入输出流量 效果图: 二.使用 适用:centos6+ 语言:英文 注意:无 下载 wget https://raw.githubuser ...
- 36、有效的数独 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(36)有效的数独 前言 1)码农三少 ,一个致力于 编写极简.但齐全题解(算法) 的博主. 2)文末附赠 价值上百美刀 资料. 一 ...