Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一章介绍了如何估计time-varying 下的causal effect.

21.1 The g-formula for time-varying treatments

求静态的\(\mathbb{E}[Y^{\bar{a}}]\),

\[\sum_l \mathbb{E}[Y|\bar{A}=\bar{a}, \bar{L}=\bar{l}]\prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}).
\]

至于动态的\(Y^g\),总感觉书上给的公式缺了一块.

21.2 IP weighting for time-varying treatments

同样是静态的:

\[W^{\bar{A}} = \prod_{k=0}^K \frac{1}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)},\\
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]

21.3 A doubly robust estimator for time-varying treatments

一种doubly robust的估计方法.

21.4 G-estimation for time-varying treatments

\[H_k(\psi^{\dagger}) = Y - \sum_{j=k}^K A_j \gamma_j(\bar{A}_{j-1}, \bar{L}_{j}, \psi^{\dagger}).
\]

通过下式来估计:

\[\mathrm{logit}\:\mathrm{Pr} [A_k=1|H_k(\psi^{\dagger}), \bar{L}_k, \bar{A}_{k-1}] = \alpha_0 + \alpha_1 H_k(\psi^{\dagger}) + \alpha_2 W_k.
\]

21.5 Censoring is a time-varying treatment

当censoring也是一个time-varying变量的时候.

\[\sum_{\bar{l}} \mathbb{E}[Y|\bar{A}=a, \bar{C}=\bar{0}, \bar{L}=\bar{l}] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, c_{k-1}=0, \bar{l}_{k-1}).
\]
\[W^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]

Fine Point

Treatment and covariate history

Representations of the g-formula

G-estimation with a saturated structural nested model

Technical Point

The g-formula density for static strategies

The g-null paradox

A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments

Relation between marginal structural models and structural nested models (Part II)

A closed form estimator for linear structural nested mean models

Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model

Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章

  1. 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior

    原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...

  2. Chapter 7:Statistical-Model-Based Methods

    作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...

  3. MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables

    之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...

  4. 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods

    2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...

  5. Thinking in Java from Chapter 21

    From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...

  6. Chapter 20: Diagnostics

    WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...

  7. ESL翻译:Linear Methods for Regression

    chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...

  8. 《Think in Java》20 21(并发)

    chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. LeetCode两数之和

    LeetCode 两数之和 题目描述 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是 ...

  2. 外网无法访问hdfs文件系统

    由于本地测试和服务器不在一个局域网,安装的hadoop配置文件是以内网ip作为机器间通信的ip. 在这种情况下,我们能够访问到namenode机器, namenode会给我们数据所在机器的ip地址供我 ...

  3. 数仓day01

    1. 该项目适用哪些行业? 主营业务在线上进行的一些公司,比如外卖公司,各类app(比如:下厨房,头条,安居客,斗鱼,每日优鲜,淘宝网等等) 这类公司通常要针对用户的线上访问行为.消费行为.业务操作行 ...

  4. ES5中改变this指向的三种方法

    ES5中提供了三种改变函数中this指针指向的方法,分别如下 1.call() var obj = {username:"孙悟空"}; //没有任何修饰的调用函数,函数中的this ...

  5. elasticSearch索引库查询的相关方法

    package com.hope.es;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.c ...

  6. fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to connect to github.com port 443: Timed out

    今天使用git push的时候提示"fatal: unable to access 'https://github.com/xxxxx/xxxx.git/': Failed to conne ...

  7. SpringBoot中使用JUnit4(入门篇)

    添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>sp ...

  8. Mysql报错合集

    目录 一.链接报错 客户端连接mysql出错 链接客户端出错 交互登陆mysql出现warning警告Using a password 导入数据到数据库报错ERROR 1050 登陆数据库提示-bas ...

  9. shell脚本 监控网卡信息

    一.简介 源码地址 日期:2018/6/22 介绍:显示实时输入输出流量 效果图: 二.使用 适用:centos6+ 语言:英文 注意:无 下载 wget https://raw.githubuser ...

  10. 36、有效的数独 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(36)有效的数独 前言 1)码农三少 ,一个致力于 编写极简.但齐全题解(算法) 的博主. 2)文末附赠 价值上百美刀 资料. 一 ...