将$s$中的01分别变为$1,-1$,即得到一个序列$a_{i}$(设其长度为$n$,下标范围为$[1,n]$)

对$a_{i}$建立一张有向图,其点集合为$Z$,并对$\forall 0\le k<n$从$\sum_{i=1}^{k}a_{i}$向$\sum_{i=1}^{k+1}a_{i}$连边(允许重边),那么$a_{i}$即对应于其中一条以0为起点的欧拉路

若对区间$[l,r]$操作,记操作后的序列为$a'_{i}$,则有$\sum_{i=l}^{r}a_{i}=0(=\sum_{i=l}^{r}a'_{i})$且$\forall l\le i\le r,a'_{i}=-a_{r-(i-l)}$

根据此性质,简单来分析前缀和的变化:

1.对于$k\not\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{k}a_{i}$

2.对于$k\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{l-1}a_{i}-\sum_{i=l}^{k}a_{r-(i-l)}=\sum_{i=1}^{r-(k-l)-1}a_{i}$

进一步的,再来分析这条欧拉路的变化,结合前缀和的变化即是将原本从$\sum_{i=1}^{l-1}a_{i}$到$\sum_{i=1}^{r}a_{i}$这一个环(注意两值相同)反转(将所有边变为反向边)并倒序经过

另一方面,显然每一个环(包括非简单环)都可以以此法操作(注意这里的操作是对欧拉路)

换言之,问题即通过这样的操作最小化这条欧拉路的字典序

实际上,问题也可以看作:将图中的边看作无向边后,最小化以0为起点的欧拉路字典序

注意到操作只是反转边的方向,那么得到的欧拉路一定是新问题中的欧拉路

另一方面,即要通过这条欧拉路(通过操作)构造出所有新问题中的欧拉路

对其归纳,若其第一步与这条欧拉路方向不同,分类讨论:

1.若该边仅存在一条(指无向边),那么起点的另一个方向即必然不存在边(否则这不是欧拉路),进而显然方向不会不同

2.若该边存在多条,之后总有一次从该边返回起点,从最初到该位置全部反转后方向即相同

进一步的,将两者第一步均删除后即变为归纳的问题(边数减少),也即得证

而对于这个新问题,可以利用图的特殊性直接贪心:初始$x=0$,每一次优先向$x-1$移动(除非该边仅存在一条且$x$到$x+1$仍有边,此时向$x+1$移动),最终显然字典序最小

时间复杂度为$o(n)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 int t,n,x,sum,cnt[N<<1];
5 char s[N];
6 int main(){
7 scanf("%d",&t);
8 while (t--){
9 scanf("%s",s+1);
10 n=strlen(s+1),x=sum=n;
11 for(int i=0;i<=(n<<1);i++)cnt[i]=0;
12 for(int i=1;i<=n;i++){
13 if (s[i]=='0')cnt[--sum]++;
14 else cnt[sum++]++;
15 }
16 for(int i=1;i<=n;i++){
17 if ((cnt[x-1]>1)||(!cnt[x])){
18 putchar('0');
19 cnt[--x]--;
20 }
21 else{
22 putchar('1');
23 cnt[x++]--;
24 }
25 }
26 putchar('\n');
27 }
28 return 0;
29 }

[cf1458D]Flip and Reverse的更多相关文章

  1. CF1458D Flip and Reverse[题解]

    Flip and Reverse 题目大意 给定一个 \(01\) 字符串,有机会进行若干次操作,对于每一次操作: 选择该字符串的子串,要求是该子串内包含数量相同的 \(0\) , \(1\) 字符. ...

  2. 多校联训 DS 专题

    CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...

  3. 小白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》连载四(场景切换)

    作为一款真正有使用价值的应用,首先应该至少有两个页面,通过页面的切换来实现更多的交互.比如手机人人网,打开以后先是进入登录页面,登录后会有新鲜事,然后拉开左边的面板,能看到相册.悄悄话.应用之类的其他 ...

  4. bzoj 2631: tree 动态树+常数优化

    2631: tree Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1716  Solved: 576[Submit][Status] Descrip ...

  5. 白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》串行4(场景变化)

    作为一个真正的利用价格值应用,首先,你应该至少有两页,通过切换页面来实现很多其他互动.比如手机人人网,首先,打开后进入登录页面,将有登录后,新的东西.然后拉左侧面板.你可以看到相册.私人信息.像其他应 ...

  6. css3 翻牌动画

    最近做了一个特效,css是从网上找的,地址是这个: CSS3 animate flip下的纸牌翻转效果实例页面 把其中核心的css代码扒出来如下: /* The properties in this ...

  7. MOG插件(葡萄牙语,略作翻译)

    这次记录下MOG大神的插件,自从我发现了这个插件,似乎开启了一个新世界诶~~~ 网址 https://atelierrgss.wordpress.com 1. MOG_YuruYuri.js CARA ...

  8. WebApp之H5登录注册

    代码indexhtml <!DOCTYPE html> <html> <head> <meta charset="utf-8"> & ...

  9. 平衡树 & LCT

    1. 非旋 Treap(FHQ Treap) 1.1. 算法简介 FHQ Treap 的功能非常强大.它涵盖了 Treap 几乎所有的功能 所以我非常后悔学了 Treap,浪费时间. FHQ 的核心思 ...

随机推荐

  1. go语言游戏服务端开发(四)——RPC机制

    五邑隐侠,本名关健昌,12年游戏生涯. 本教程以Go语言为例. RPC指远程方法调用,游戏里引入RPC目的是降低跨进程交互的复杂度. 游戏业务设计为多go routine,一个玩家一个go routi ...

  2. Spring Boot中使用PostgreSQL数据库

    在如今的关系型数据库中,有两个开源产品是你必须知道的.其中一个是MySQL,相信关注我的小伙伴们一定都不陌生,因为之前的Spring Boot关于关系型数据库的所有例子都是对MySQL来介绍的.而今天 ...

  3. CEF使用过程问题合集

    CEF使用过程问题合集 1.Couldn't mmap icu data file 解决方案:检查程序执行目录下是否有icudtl.dat文件,如果没有请从cef的Resources文件夹中复制一份. ...

  4. 使用Mybatis的一些基本配置及Mybatis与数据库交互测试验证

    1.简介 什么是MyBatis? MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.My ...

  5. 【技术博客】Flutter—使用网络请求的页面搭建流程、State生命周期、一些组件的应用

    Flutter-使用网络请求的页面搭建流程.State生命周期.一些组件的应用 使用网络请求的页面搭建流程 ​ 在开发APP时,我们常常会遇到如下场景:进入一个页面后,要先进行网络调用,然后使用调用返 ...

  6. [Beta]the Agiles Scrum Meeting 4

    会议时间:2020.5.15 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 增加教学计划面板,修复bug tq 实现查看.删除测试点功能 wjx 实现批量创建结对项目功能 ...

  7. 团队任务拆解(alpha)

    团队任务拆解(alpha阶段) 项目 内容 班级:2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业:团队任务拆解 团队任务拆解 我们在这个课程中的目标 写出令客户和自己都满意的代码同 ...

  8. PCB设计中新手和老手都适用的七个基本技巧和策略

    本文将讨论新手和老手都适用的七个基本(而且重要的)技巧和策略.只要在设计过程中对这些技巧多加注意,就能减少设计回炉次数.设计时间和总体诊断难点. 技巧一:注重研究制造方法和代工厂化学处理过程 在这个无 ...

  9. Python:Ubuntu上出现错误 Could not load dynamic library 'libnvinfer.so.6' / 'libnvinfer_plugin.so.6'

    运行一个py文件,出现如下的错误,原因是没有找到 libnvinfer.so.6 相关库的文件. 1 2021-01-04 18:41:17.324477: W tensorflow/stream_e ...

  10. 栈的压入、弹出顺序 牛客网 剑指Offer

    栈的压入.弹出顺序 牛客网 剑指Offer 题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是 ...