将$s$中的01分别变为$1,-1$,即得到一个序列$a_{i}$(设其长度为$n$,下标范围为$[1,n]$)

对$a_{i}$建立一张有向图,其点集合为$Z$,并对$\forall 0\le k<n$从$\sum_{i=1}^{k}a_{i}$向$\sum_{i=1}^{k+1}a_{i}$连边(允许重边),那么$a_{i}$即对应于其中一条以0为起点的欧拉路

若对区间$[l,r]$操作,记操作后的序列为$a'_{i}$,则有$\sum_{i=l}^{r}a_{i}=0(=\sum_{i=l}^{r}a'_{i})$且$\forall l\le i\le r,a'_{i}=-a_{r-(i-l)}$

根据此性质,简单来分析前缀和的变化:

1.对于$k\not\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{k}a_{i}$

2.对于$k\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{l-1}a_{i}-\sum_{i=l}^{k}a_{r-(i-l)}=\sum_{i=1}^{r-(k-l)-1}a_{i}$

进一步的,再来分析这条欧拉路的变化,结合前缀和的变化即是将原本从$\sum_{i=1}^{l-1}a_{i}$到$\sum_{i=1}^{r}a_{i}$这一个环(注意两值相同)反转(将所有边变为反向边)并倒序经过

另一方面,显然每一个环(包括非简单环)都可以以此法操作(注意这里的操作是对欧拉路)

换言之,问题即通过这样的操作最小化这条欧拉路的字典序

实际上,问题也可以看作:将图中的边看作无向边后,最小化以0为起点的欧拉路字典序

注意到操作只是反转边的方向,那么得到的欧拉路一定是新问题中的欧拉路

另一方面,即要通过这条欧拉路(通过操作)构造出所有新问题中的欧拉路

对其归纳,若其第一步与这条欧拉路方向不同,分类讨论:

1.若该边仅存在一条(指无向边),那么起点的另一个方向即必然不存在边(否则这不是欧拉路),进而显然方向不会不同

2.若该边存在多条,之后总有一次从该边返回起点,从最初到该位置全部反转后方向即相同

进一步的,将两者第一步均删除后即变为归纳的问题(边数减少),也即得证

而对于这个新问题,可以利用图的特殊性直接贪心:初始$x=0$,每一次优先向$x-1$移动(除非该边仅存在一条且$x$到$x+1$仍有边,此时向$x+1$移动),最终显然字典序最小

时间复杂度为$o(n)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 int t,n,x,sum,cnt[N<<1];
5 char s[N];
6 int main(){
7 scanf("%d",&t);
8 while (t--){
9 scanf("%s",s+1);
10 n=strlen(s+1),x=sum=n;
11 for(int i=0;i<=(n<<1);i++)cnt[i]=0;
12 for(int i=1;i<=n;i++){
13 if (s[i]=='0')cnt[--sum]++;
14 else cnt[sum++]++;
15 }
16 for(int i=1;i<=n;i++){
17 if ((cnt[x-1]>1)||(!cnt[x])){
18 putchar('0');
19 cnt[--x]--;
20 }
21 else{
22 putchar('1');
23 cnt[x++]--;
24 }
25 }
26 putchar('\n');
27 }
28 return 0;
29 }

[cf1458D]Flip and Reverse的更多相关文章

  1. CF1458D Flip and Reverse[题解]

    Flip and Reverse 题目大意 给定一个 \(01\) 字符串,有机会进行若干次操作,对于每一次操作: 选择该字符串的子串,要求是该子串内包含数量相同的 \(0\) , \(1\) 字符. ...

  2. 多校联训 DS 专题

    CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...

  3. 小白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》连载四(场景切换)

    作为一款真正有使用价值的应用,首先应该至少有两个页面,通过页面的切换来实现更多的交互.比如手机人人网,打开以后先是进入登录页面,登录后会有新鲜事,然后拉开左边的面板,能看到相册.悄悄话.应用之类的其他 ...

  4. bzoj 2631: tree 动态树+常数优化

    2631: tree Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1716  Solved: 576[Submit][Status] Descrip ...

  5. 白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》串行4(场景变化)

    作为一个真正的利用价格值应用,首先,你应该至少有两页,通过切换页面来实现很多其他互动.比如手机人人网,首先,打开后进入登录页面,将有登录后,新的东西.然后拉左侧面板.你可以看到相册.私人信息.像其他应 ...

  6. css3 翻牌动画

    最近做了一个特效,css是从网上找的,地址是这个: CSS3 animate flip下的纸牌翻转效果实例页面 把其中核心的css代码扒出来如下: /* The properties in this ...

  7. MOG插件(葡萄牙语,略作翻译)

    这次记录下MOG大神的插件,自从我发现了这个插件,似乎开启了一个新世界诶~~~ 网址 https://atelierrgss.wordpress.com 1. MOG_YuruYuri.js CARA ...

  8. WebApp之H5登录注册

    代码indexhtml <!DOCTYPE html> <html> <head> <meta charset="utf-8"> & ...

  9. 平衡树 & LCT

    1. 非旋 Treap(FHQ Treap) 1.1. 算法简介 FHQ Treap 的功能非常强大.它涵盖了 Treap 几乎所有的功能 所以我非常后悔学了 Treap,浪费时间. FHQ 的核心思 ...

随机推荐

  1. 【DP】Educational DP Contest

    这份 dp 题单的最后几题好难 orz. 前面的题比较简单,所以我会选取一些题来讲,其它的直接看代码理解吧 qwq. 传送门: https://atcoder.jp/contests/dp 全部 AC ...

  2. 题解 CF833D Red-Black Cobweb

    题目传送门 题目大意 给出一个 \(n\) 个点的树,每条边有边权和颜色 \(0,1\) ,定义一条链合法当且仅当 \(0,1\) 颜色的边数之比小于等于 \(2\) ,求所有合法的链的边权之积的积. ...

  3. 微信h5跳转小程序wx-open-launch-weapp开放标签不显示(已解决)

    前言: 前几天成功对接了跳转第三方小程序的功能,今天有个页面有需要对接.但是奇怪的是用的和上次一模一样的配置,但就是死活不显示wx-open-launch-weapp这个开放标签的按钮,看不到任何效果 ...

  4. Golang通脉之包的管理

    在工程化的开发项目中,Go语言的源码复用是建立在包(package)基础之上的. 包(package)是多个Go源码的集合,是一种高级的代码复用方案,Go语言提供了很多内置包,如fmt.os.io等. ...

  5. python pip使用国内镜像安装第三方库:命令行或PyCharm

    python pip使用国内镜像安装第三方库:命令行或PyCharm 转载: https://blog.csdn.net/lly1122334/article/details/80646996

  6. 关于takin-data,你想知道的都在这里(一)启动命令篇

    通过docker部署体验takin的小伙伴都应该知道,在安装部署手册中有提到:在启动surge-deploy任务前,需要将启动命令中的ip参数替换为docker容器所在宿主机的ip,很多小伙伴都在这里 ...

  7. 974.和可被K整除的子数组

    题目 给定一个整数数组 A,返回其中元素之和可被 K 整除的(连续.非空)子数组的数目. 示例: 输入:A = [4,5,0,-2,-3,1], K = 5 输出:7 解释: 有 7 个子数组满足其元 ...

  8. Java序列初始化

    1.数组 Java数组可以用元素集合初始化: char[] c=new char[]{'.','.','.','.'}; 而想要用指定数量的相同元素来初始化数组,可以使用Arrays.fill()方法 ...

  9. Java:并发笔记-09

    Java:并发笔记-09 说明:这是看了 bilibili 上 黑马程序员 的课程 java并发编程 后做的笔记 7. 共享模型之工具-2 原理:AQS 原理 对于 AQS 的原理这部分内容,没很好的 ...

  10. springboot多配置环境

    在我们的开发过程中,经常会有多套配置环境,比如开发环境(dev),测试环境(test),生产环境(prod)等,在各个环境中我们需要使用到不同的配置,那么在springboot中是如何做到的呢? 1. ...