枚举携带的"A型守护精灵"数$A_{0}$,那么即只能经过$A_{i}\le A_{0}$的边,并最小化1到$n$路径上最大的$B_{i}$

将所有边按照$A_{i}$从小到大排序,那么前者即不断加入边,后者通过LCT维护$B_{i}$的最小生成树即可

具体的,将每一条边拆成一个点,向对应的两端点连边,加入一条边时查询对应环(若不产生环则直接加入)上$B_{i}$最大的边并替换即可

时间复杂度为$o(m\log m)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 150005
4 struct Data{
5 int x,y,a,b;
6 bool operator < (const Data &k)const{
7 return a<k.a;
8 }
9 }e[N];
10 multiset<int>S;
11 int n,m,ans,st[N],fa[N],sz[N],rev[N],val[N],mx[N],ch[N][2];
12 int which(int k){
13 return ch[fa[k]][1]==k;
14 }
15 int check(int k){
16 return ch[fa[k]][which(k)]==k;
17 }
18 int get_max(int x,int y){
19 if (e[x].b>e[y].b)return x;
20 return y;
21 }
22 void upd(int k){
23 rev[k]^=1;
24 swap(ch[k][0],ch[k][1]);
25 }
26 void up(int k){
27 sz[k]=sz[ch[k][0]]+sz[ch[k][1]]+1;
28 mx[k]=get_max(get_max(mx[ch[k][0]],mx[ch[k][1]]),val[k]);
29 }
30 void down(int k){
31 if (rev[k]){
32 if (ch[k][0])upd(ch[k][0]);
33 if (ch[k][1])upd(ch[k][1]);
34 rev[k]=0;
35 }
36 }
37 void rotate(int k){
38 int f=fa[k],g=fa[f],p=which(k);
39 fa[k]=g;
40 if (check(f))ch[g][which(f)]=k;
41 fa[ch[k][p^1]]=f,ch[f][p]=ch[k][p^1];
42 fa[f]=k,ch[k][p^1]=f;
43 up(f),up(k);
44 }
45 void splay(int k){
46 for(int i=k;;i=fa[i]){
47 st[++st[0]]=i;
48 if (!check(i))break;
49 }
50 while (st[0])down(st[st[0]--]);
51 for(int i=fa[k];check(k);i=fa[k]){
52 if (check(i)){
53 if (which(i)==which(k))rotate(i);
54 else rotate(k);
55 }
56 rotate(k);
57 }
58 }
59 void access(int k){
60 int lst=0;
61 while (k){
62 splay(k);
63 ch[k][1]=lst,up(k);
64 lst=k,k=fa[k];
65 }
66 }
67 void make_root(int k){
68 access(k);
69 splay(k);
70 upd(k);
71 }
72 int find_root(int k){
73 access(k);
74 splay(k);
75 while (ch[k][0]){
76 down(k);
77 k=ch[k][0];
78 }
79 splay(k);
80 return k;
81 }
82 void add(int x,int y){
83 make_root(x);
84 make_root(y);
85 fa[y]=x;
86 }
87 void del(int x,int y){
88 make_root(x);
89 access(y);
90 splay(x);
91 fa[y]=ch[x][1]=0;
92 up(x);
93 }
94 int query(int x,int y){
95 make_root(x);
96 if (find_root(y)!=x)return -1;
97 return mx[x];
98 }
99 int main(){
100 scanf("%d%d",&n,&m);
101 for(int i=1;i<=m;i++)scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
102 sort(e+1,e+m+1);
103 for(int i=1;i<=m;i++)val[i+n]=mx[i+n]=i;
104 for(int i=1;i<=m;i++)add(e[i].x,i+n);
105 ans=1e9;
106 for(int i=1;i<=m;i++){
107 int s=query(e[i].y,i+n);
108 if (s!=i){
109 if (s>0)del(e[s].y,s+n);
110 add(e[i].y,i+n);
111 }
112 s=query(1,n);
113 if (s>0)ans=min(ans,e[i].a+e[s].b);
114 }
115 if (ans==1e9)ans=-1;
116 printf("%d\n",ans);
117 return 0;
118 }

[loj2245]魔法森林的更多相关文章

  1. loj2245 [NOI2014]魔法森林 LCT

    [NOI2014]魔法森林 链接 loj 思路 a排序,b做动态最小生成树. 把边拆成点就可以了. uoj98.也许lct复杂度写假了..越卡常,越慢 代码 #include <bits/std ...

  2. 【BZOJ3669】[Noi2014]魔法森林 LCT

    终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...

  3. BZOJ 3669 【NOI2014】 魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  4. BZOJ-3669 魔法森林 Link-Cut-Tree

    意识到背模版的重要性了,记住了原理和操作,然后手打模版残了..颓我时间...... 3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 M ...

  5. 【BZOJ】3669: [Noi2014]魔法森林(lct+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3669 首先看到题目应该可以得到我们要最小化 min{ max{a(u, v)} + max{b(u, ...

  6. NOI2014 魔法森林

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 106  Solved: 62[Submit][Status] ...

  7. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  8. 图论 BZOJ 3669 [Noi2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  9. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

随机推荐

  1. try catch中的return与finally

    try catch中的return与finally 代码为 public class Test{ public int add(int a,int b){ try { return a+b; } ca ...

  2. css超出隐藏显示省略号怎么设置?

    当我们在进行网页前端开发的时候,一般获取文章标题,然后一行一行的显示.但是当标题过长的时候,就会造成换行显示.还有显示部分文本信息时,如果全部显示就过于繁琐,会带来不会的网页体验感.虽然我们可以使用o ...

  3. 2021.2.23--vj补题

    B - B CodeForces - 699B 题目: You are given a description of a depot. It is a rectangular checkered fi ...

  4. Java(30)集合五Set

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228440.html 博客主页:https://www.cnblogs.com/testero ...

  5. D:\Software\Keil5\ARM\PACK\Keil\STM32F1xx_DFP\2.1.0\Device\Include\stm32f10x.h(483): error: #5: cannot open source input file "core_cm3.h": No such file or directory

    1. 错误提示信息: D:\Software\Keil5\ARM\PACK\Keil\STM32F1xx_DFP\2.1.0\Device\Include\stm32f10x.h(483): erro ...

  6. 初始CSS01

    CSS基础知识 CSS介绍 CSS全称为层叠样式表,与HTML相辅相成,实现网页的排版布局与样式美化. 使用方式 根据样式表在页面中呈现的方式不同,可以通过以下三种方式在页面中使用格式 内联样式 改样 ...

  7. SPI在JDBC中的运用

    前言 之前学习了JDK SPI的机制,本文专门讨论2个内容: 1.为什么在使用SPI后,不需要Class.forName()了? 2.SPI在JDBC中的运用. JDBC模板代码 private st ...

  8. RSA加密——前端JSEncrypt

    RSA加密--前端JSEncrypt 介绍 ​ JSEncrypt是一个RSA加密库,在没有SSL加密传输通道支持https协议的情况下,该库可以在http传输重要信息如时,保证数据的安全性.我们小组 ...

  9. OO_JAVA_电梯运行模拟_单元总结

    电梯运行模拟--三次作业总结 目录 电梯运行模拟--三次作业总结 总体遵循的设计思路 逻辑解耦 电梯与调度器解耦 楼层信息的存储和变更与电梯.调度器解耦 调度器运行流程解耦 第一次电梯,蠢笨串行先到先 ...

  10. 【学习笔记】Vizing 定理

    图染色问题的经典结论 定义 称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色 一张无向图的边着色数为最小的 ...