k8s endpoints controller分析

endpoints controller简介

endpoints controller是kube-controller-manager组件中众多控制器中的一个,是 endpoints 资源对象的控制器,其通过对service、pod 2种资源的监听,当这2种资源发生变化时会触发 endpoints controller 对相应的endpoints资源进行调谐操作,从而完成endpoints对象的新建、更新、删除等操作。

endpoints controller架构图

endpoints controller的大致组成和处理流程如下图,endpoints controller对pod、service对象注册了event handler,当有事件时,会watch到然后将对应的service对象放入到queue中,然后syncService方法为endpoints controller调谐endpoints对象的核心处理逻辑所在,从queue中取出service对象,再查询相应的pod对象列表,然后对endpoints对象做调谐处理。

service对象简介

Service 是对一组提供相同功能的 Pods 的抽象,并为它们提供一个统一的入口。借助 Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级。Service 通过标签来选取服务后端,这些匹配标签的 Pod IP 和端口列表组成 endpoints,由 kube-proxy 负责将服务 IP 负载均衡到这些 endpoints 上。

service的四种类型如下。

(1)ClusterIP

类型为ClusterIP的service,这个service有一个Cluster IP,其实就一个VIP,具体实现原理依靠kubeproxy组件,通过iptables或是ipvs实现。该类型的service 只能在集群内访问。

client访问Cluster IP,通过iptables或ipvs规则转到Real Server(endpoints),从而达到负载均衡的效果。

Headless Service

特殊的ClusterIP,通过指定 Cluster IP(spec.clusterIP)的值为 "None" 来创建 Headless Service。

使用场景一:自主选择权,client自行决定使用哪个Real Server,可以通过查询DNS来获取Real Server的信息。

使用场景二:Headless Service的对应的每一个Endpoints,即每一个Pod,都会有对应的DNS域名,这样Pod之间就可以通过域名互相访问(该用法常用于statefulset)。

(2)NodePort

在 ClusterIP 基础上为 Service在每台机器上绑定一个端口,这样就可以通过<NodeIP>:NodePort来访问该服务。在集群内,NodePort 服务仍然像之前的 ClusterIP 服务一样访问。

(3)LoadBalancer

在 NodePort 的基础上,借助 cloud provider 创建一个外部的负载均衡器,并将请求转发到 <NodeIP>:NodePort

(4)ExternalName

将服务通过 DNS CNAME 记录方式转发到指定的域名。

apiVersion: v1
kind: Service
metadata:
name: baidu-service
namespace: test
spec:
type: ExternalName
externalName: www.baidu.com

endpoints对象简介

endpoints中指定了需要连接的服务IP和端口,可以认为endpoints定义了service的backend后端。当访问service时,实际上是会将请求负载均衡到endpoints定义的服务IP与端口上面去。

另外,endpoints对象与同名称的service对象相关联。

endpoints controller分析将分为两大块进行,分别是:

(1)endpoints controller初始化与启动分析;

(2)endpoints controller处理逻辑分析。

1.endpoints controller初始化与启动分析

基于tag v1.17.4

https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4

直接看到startEndpointController函数,作为endpoints controller启动分析的入口。

startEndpointController

startEndpointController函数中启动了一个goroutine,先是调用了endpointcontroller的NewEndpointController方法初始化endpoints controller,接着调用Run方法启动endpoints controller。

// cmd/kube-controller-manager/app/core.go
func startEndpointController(ctx ControllerContext) (http.Handler, bool, error) {
go endpointcontroller.NewEndpointController(
ctx.InformerFactory.Core().V1().Pods(),
ctx.InformerFactory.Core().V1().Services(),
ctx.InformerFactory.Core().V1().Endpoints(),
ctx.ClientBuilder.ClientOrDie("endpoint-controller"),
ctx.ComponentConfig.EndpointController.EndpointUpdatesBatchPeriod.Duration,
).Run(int(ctx.ComponentConfig.EndpointController.ConcurrentEndpointSyncs), ctx.Stop)
return nil, true, nil
}

1.1 NewEndpointController

先来看到endpoints controller的初始化方法NewEndpointController

NewEndpointController函数代码中可以看到,endpoints controller注册了三个informer,分别是podInformer、serviceInformer与endpointsInformer,以及注册了service与pod对象的EventHandler,也即对这2个对象的event进行监听,把event放入事件队列,由endpoints controller的核心处理方法做做处理。

// pkg/controller/endpoint/endpoints_controller.go
func NewEndpointController(podInformer coreinformers.PodInformer, serviceInformer coreinformers.ServiceInformer,
endpointsInformer coreinformers.EndpointsInformer, client clientset.Interface, endpointUpdatesBatchPeriod time.Duration) *EndpointController {
broadcaster := record.NewBroadcaster()
broadcaster.StartLogging(klog.Infof)
broadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: client.CoreV1().Events("")})
recorder := broadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "endpoint-controller"}) if client != nil && client.CoreV1().RESTClient().GetRateLimiter() != nil {
ratelimiter.RegisterMetricAndTrackRateLimiterUsage("endpoint_controller", client.CoreV1().RESTClient().GetRateLimiter())
}
e := &EndpointController{
client: client,
queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "endpoint"),
workerLoopPeriod: time.Second,
} serviceInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: e.onServiceUpdate,
UpdateFunc: func(old, cur interface{}) {
e.onServiceUpdate(cur)
},
DeleteFunc: e.onServiceDelete,
})
e.serviceLister = serviceInformer.Lister()
e.servicesSynced = serviceInformer.Informer().HasSynced podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: e.addPod,
UpdateFunc: e.updatePod,
DeleteFunc: e.deletePod,
})
e.podLister = podInformer.Lister()
e.podsSynced = podInformer.Informer().HasSynced e.endpointsLister = endpointsInformer.Lister()
e.endpointsSynced = endpointsInformer.Informer().HasSynced e.triggerTimeTracker = endpointutil.NewTriggerTimeTracker()
e.eventBroadcaster = broadcaster
e.eventRecorder = recorder e.endpointUpdatesBatchPeriod = endpointUpdatesBatchPeriod e.serviceSelectorCache = endpointutil.NewServiceSelectorCache() return e
}

1.2 Run

主要看到for循环处,根据workers的值(来源于kcm启动参数concurrent-endpoint-syncs配置),启动相应数量的goroutine,跑e.worker方法。

// pkg/controller/endpoint/endpoints_controller.go
func (e *EndpointController) Run(workers int, stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
defer e.queue.ShutDown() klog.Infof("Starting endpoint controller")
defer klog.Infof("Shutting down endpoint controller") if !cache.WaitForNamedCacheSync("endpoint", stopCh, e.podsSynced, e.servicesSynced, e.endpointsSynced) {
return
} for i := 0; i < workers; i++ {
go wait.Until(e.worker, e.workerLoopPeriod, stopCh)
} go func() {
defer utilruntime.HandleCrash()
e.checkLeftoverEndpoints()
}() <-stopCh
}

1.2.1 worker

直接看到processNextWorkItem方法,从队列queue中取出一个key,然后调用e.syncService方法对该key做处理,e.syncService方法也即endpoints controller的核心处理方法,后面会做详细分析。

// pkg/controller/endpoint/endpoints_controller.go
func (e *EndpointController) worker() {
for e.processNextWorkItem() {
}
} func (e *EndpointController) processNextWorkItem() bool {
eKey, quit := e.queue.Get()
if quit {
return false
}
defer e.queue.Done(eKey) err := e.syncService(eKey.(string))
e.handleErr(err, eKey) return true
}

2.endpoints controller核心处理分析

基于tag v1.17.4

https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4

直接看到syncService方法,作为endpoints controller核心处理分析的入口。

2.1 核心处理逻辑-syncService

主要逻辑:

(1)获取service对象,当查询不到该service对象时,删除同名endpoints对象;

(2)当service对象的.Spec.Selector为空时,不存在对应的endpoints对象,直接返回;

(3)根据service对象的.Spec.Selector,查询与service对象匹配的pod列表;

(4)查询service的annotations中是否配置了TolerateUnreadyEndpoints,代表允许为unready的pod也创建endpoints,该配置将会影响下面对endpoints对象的subsets信息的计算;

(5)遍历service对象匹配的pod列表,找出合适的pod,计算endpoints的subsets信息;

遍历pod列表时如何计算出subsets?

(5.1)过滤掉pod ip为空的pod;

(5.2)当TolerateUnreadyEndpoints配置为false且pod的deletetimestamp不为空时,过滤掉该pod;

(5.3)当service没有ports配置,且ClusterIP为None时,为headless service,调用addEndpointSubset函数计算subsets,计算出来的subsets中的ports信息为空;

(5.4)当service有ports配置,遍历ports配置,循环调用addEndpointSubset函数计算subsets(addEndpointSubset函数在后面会展开分析)。

(6)获取endpoints对象;

(7)判断现存endpoints对象与调谐中重新计算出来的的endpoints对象的subsets与labels是否一致,一致则无需更新,直接返回;

(8)当endpoints对象不存在时新建endpoints对象,当endpoints对象存在时更新endpoints对象。

func (e *EndpointController) syncService(key string) error {
startTime := time.Now()
defer func() {
klog.V(4).Infof("Finished syncing service %q endpoints. (%v)", key, time.Since(startTime))
}() namespace, name, err := cache.SplitMetaNamespaceKey(key)
if err != nil {
return err
}
service, err := e.serviceLister.Services(namespace).Get(name)
if err != nil {
if !errors.IsNotFound(err) {
return err
} // Delete the corresponding endpoint, as the service has been deleted.
// TODO: Please note that this will delete an endpoint when a
// service is deleted. However, if we're down at the time when
// the service is deleted, we will miss that deletion, so this
// doesn't completely solve the problem. See #6877.
err = e.client.CoreV1().Endpoints(namespace).Delete(name, nil)
if err != nil && !errors.IsNotFound(err) {
return err
}
e.triggerTimeTracker.DeleteService(namespace, name)
return nil
} if service.Spec.Selector == nil {
// services without a selector receive no endpoints from this controller;
// these services will receive the endpoints that are created out-of-band via the REST API.
return nil
} klog.V(5).Infof("About to update endpoints for service %q", key)
pods, err := e.podLister.Pods(service.Namespace).List(labels.Set(service.Spec.Selector).AsSelectorPreValidated())
if err != nil {
// Since we're getting stuff from a local cache, it is
// basically impossible to get this error.
return err
} // If the user specified the older (deprecated) annotation, we have to respect it.
tolerateUnreadyEndpoints := service.Spec.PublishNotReadyAddresses
if v, ok := service.Annotations[TolerateUnreadyEndpointsAnnotation]; ok {
b, err := strconv.ParseBool(v)
if err == nil {
tolerateUnreadyEndpoints = b
} else {
utilruntime.HandleError(fmt.Errorf("Failed to parse annotation %v: %v", TolerateUnreadyEndpointsAnnotation, err))
}
} // We call ComputeEndpointLastChangeTriggerTime here to make sure that the
// state of the trigger time tracker gets updated even if the sync turns out
// to be no-op and we don't update the endpoints object.
endpointsLastChangeTriggerTime := e.triggerTimeTracker.
ComputeEndpointLastChangeTriggerTime(namespace, service, pods) subsets := []v1.EndpointSubset{}
var totalReadyEps int
var totalNotReadyEps int for _, pod := range pods {
if len(pod.Status.PodIP) == 0 {
klog.V(5).Infof("Failed to find an IP for pod %s/%s", pod.Namespace, pod.Name)
continue
}
if !tolerateUnreadyEndpoints && pod.DeletionTimestamp != nil {
klog.V(5).Infof("Pod is being deleted %s/%s", pod.Namespace, pod.Name)
continue
} ep, err := podToEndpointAddressForService(service, pod)
if err != nil {
// this will happen, if the cluster runs with some nodes configured as dual stack and some as not
// such as the case of an upgrade..
klog.V(2).Infof("failed to find endpoint for service:%v with ClusterIP:%v on pod:%v with error:%v", service.Name, service.Spec.ClusterIP, pod.Name, err)
continue
} epa := *ep
if endpointutil.ShouldSetHostname(pod, service) {
epa.Hostname = pod.Spec.Hostname
} // Allow headless service not to have ports.
if len(service.Spec.Ports) == 0 {
if service.Spec.ClusterIP == api.ClusterIPNone {
subsets, totalReadyEps, totalNotReadyEps = addEndpointSubset(subsets, pod, epa, nil, tolerateUnreadyEndpoints)
// No need to repack subsets for headless service without ports.
}
} else {
for i := range service.Spec.Ports {
servicePort := &service.Spec.Ports[i] portName := servicePort.Name
portProto := servicePort.Protocol
portNum, err := podutil.FindPort(pod, servicePort)
if err != nil {
klog.V(4).Infof("Failed to find port for service %s/%s: %v", service.Namespace, service.Name, err)
continue
} var readyEps, notReadyEps int
epp := &v1.EndpointPort{Name: portName, Port: int32(portNum), Protocol: portProto}
subsets, readyEps, notReadyEps = addEndpointSubset(subsets, pod, epa, epp, tolerateUnreadyEndpoints)
totalReadyEps = totalReadyEps + readyEps
totalNotReadyEps = totalNotReadyEps + notReadyEps
}
}
}
subsets = endpoints.RepackSubsets(subsets) // See if there's actually an update here.
currentEndpoints, err := e.endpointsLister.Endpoints(service.Namespace).Get(service.Name)
if err != nil {
if errors.IsNotFound(err) {
currentEndpoints = &v1.Endpoints{
ObjectMeta: metav1.ObjectMeta{
Name: service.Name,
Labels: service.Labels,
},
}
} else {
return err
}
} createEndpoints := len(currentEndpoints.ResourceVersion) == 0 if !createEndpoints &&
apiequality.Semantic.DeepEqual(currentEndpoints.Subsets, subsets) &&
apiequality.Semantic.DeepEqual(currentEndpoints.Labels, service.Labels) {
klog.V(5).Infof("endpoints are equal for %s/%s, skipping update", service.Namespace, service.Name)
return nil
}
newEndpoints := currentEndpoints.DeepCopy()
newEndpoints.Subsets = subsets
newEndpoints.Labels = service.Labels
if newEndpoints.Annotations == nil {
newEndpoints.Annotations = make(map[string]string)
} if !endpointsLastChangeTriggerTime.IsZero() {
newEndpoints.Annotations[v1.EndpointsLastChangeTriggerTime] =
endpointsLastChangeTriggerTime.Format(time.RFC3339Nano)
} else { // No new trigger time, clear the annotation.
delete(newEndpoints.Annotations, v1.EndpointsLastChangeTriggerTime)
} if newEndpoints.Labels == nil {
newEndpoints.Labels = make(map[string]string)
} if !helper.IsServiceIPSet(service) {
newEndpoints.Labels = utillabels.CloneAndAddLabel(newEndpoints.Labels, v1.IsHeadlessService, "")
} else {
newEndpoints.Labels = utillabels.CloneAndRemoveLabel(newEndpoints.Labels, v1.IsHeadlessService)
} klog.V(4).Infof("Update endpoints for %v/%v, ready: %d not ready: %d", service.Namespace, service.Name, totalReadyEps, totalNotReadyEps)
if createEndpoints {
// No previous endpoints, create them
_, err = e.client.CoreV1().Endpoints(service.Namespace).Create(newEndpoints)
} else {
// Pre-existing
_, err = e.client.CoreV1().Endpoints(service.Namespace).Update(newEndpoints)
}
if err != nil {
if createEndpoints && errors.IsForbidden(err) {
// A request is forbidden primarily for two reasons:
// 1. namespace is terminating, endpoint creation is not allowed by default.
// 2. policy is misconfigured, in which case no service would function anywhere.
// Given the frequency of 1, we log at a lower level.
klog.V(5).Infof("Forbidden from creating endpoints: %v", err) // If the namespace is terminating, creates will continue to fail. Simply drop the item.
if errors.HasStatusCause(err, v1.NamespaceTerminatingCause) {
return nil
}
} if createEndpoints {
e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToCreateEndpoint", "Failed to create endpoint for service %v/%v: %v", service.Namespace, service.Name, err)
} else {
e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToUpdateEndpoint", "Failed to update endpoint %v/%v: %v", service.Namespace, service.Name, err)
} return err
}
return nil
}

2.1.1 addEndpointSubset

下面来展开分析下计算service对象subsets信息的函数addEndpointSubset,计算出的subsets包括了Address(ReadyAddresses)与NotReadyAddresses。

主要逻辑:

(1)当配置了tolerateUnreadyEndpoints且为true时,或pod处于ready状态时,将计算进subsets中的Addresses;

(2)当配置了tolerateUnreadyEndpoints且为false或没有配置时,或pod不处于ready状态时,调用shouldPodBeInEndpoints函数,返回true时将计算进subsets中的NotReadyAddresses。

(2.1)当pod.Spec.RestartPolicy为Never,Pod Status.Phase不为Failed/Successed时,将计算进subsets中的NotReadyAddresses;

(2.2)当pod.Spec.RestartPolicy为OnFailure, Pod Status.Phase不为Successed时,Pod对应的EndpointAddress也会被加入到NotReadyAddresses中;

(2.3)其他情况下,将计算进subsets中的NotReadyAddresses。

// pkg/controller/endpoint/endpoints_controller.go
func addEndpointSubset(subsets []v1.EndpointSubset, pod *v1.Pod, epa v1.EndpointAddress,
epp *v1.EndpointPort, tolerateUnreadyEndpoints bool) ([]v1.EndpointSubset, int, int) {
var readyEps int
var notReadyEps int
ports := []v1.EndpointPort{}
if epp != nil {
ports = append(ports, *epp)
}
if tolerateUnreadyEndpoints || podutil.IsPodReady(pod) {
subsets = append(subsets, v1.EndpointSubset{
Addresses: []v1.EndpointAddress{epa},
Ports: ports,
})
readyEps++
} else if shouldPodBeInEndpoints(pod) {
klog.V(5).Infof("Pod is out of service: %s/%s", pod.Namespace, pod.Name)
subsets = append(subsets, v1.EndpointSubset{
NotReadyAddresses: []v1.EndpointAddress{epa},
Ports: ports,
})
notReadyEps++
}
return subsets, readyEps, notReadyEps
} func shouldPodBeInEndpoints(pod *v1.Pod) bool {
switch pod.Spec.RestartPolicy {
case v1.RestartPolicyNever:
return pod.Status.Phase != v1.PodFailed && pod.Status.Phase != v1.PodSucceeded
case v1.RestartPolicyOnFailure:
return pod.Status.Phase != v1.PodSucceeded
default:
return true
}
}
IsPodReady

当在pod的.status.conditions中,type为Ready的status属性值为True时,IsPodReady返回true。

// pkg/api/v1/pod/util.go
// IsPodReady returns true if a pod is ready; false otherwise.
func IsPodReady(pod *v1.Pod) bool {
return IsPodReadyConditionTrue(pod.Status)
} // GetPodReadyCondition extracts the pod ready condition from the given status and returns that.
// Returns nil if the condition is not present.
func GetPodReadyCondition(status v1.PodStatus) *v1.PodCondition {
_, condition := GetPodCondition(&status, v1.PodReady)
return condition
}

总结

endpoints controller架构图

endpoints controller的大致组成和处理流程如下图,endpoints controller对pod、service对象注册了event handler,当有事件时,会watch到然后将对应的service对象放入到queue中,然后syncService方法为endpoints controller调谐endpoints对象的核心处理逻辑所在,从queue中取出service对象,再查询相应的pod对象列表,然后对endpoints对象做调谐处理。

endpoints controller核心处理逻辑

endpoints controller的核心处理逻辑是获取service对象,当service不存在时删除同名endpoints对象,当存在时,根据service对象所关联的pod列表,计算出endpoints对象的最新subsets信息,然后新建或更新endpoints对象。

k8s endpoints controller分析的更多相关文章

  1. k8s replicaset controller分析(2)-核心处理逻辑分析

    replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...

  2. k8s replicaset controller分析(1)-初始化与启动分析

    replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...

  3. k8s replicaset controller 分析(3)-expectations 机制分析

    replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...

  4. k8s deployment controller源码分析

    deployment controller简介 deployment controller是kube-controller-manager组件中众多控制器中的一个,是 deployment 资源对象的 ...

  5. k8s statefulset controller源码分析

    statefulset controller分析 statefulset简介 statefulset是Kubernetes提供的管理有状态应用的对象,而deployment用于管理无状态应用. 有状态 ...

  6. k8s daemonset controller源码分析

    daemonset controller分析 daemonset controller简介 daemonset controller是kube-controller-manager组件中众多控制器中的 ...

  7. k8s garbage collector分析(1)-启动分析

    k8s garbage collector分析(1)-启动分析 garbage collector介绍 Kubernetes garbage collector即垃圾收集器,存在于kube-contr ...

  8. k8s源码分析准备工作 - 源码准备

    本文原始地址:https://farmer-hutao.github.io/k8s-source-code-analysis/ 项目github地址:https://github.com/farmer ...

  9. k8s自定义controller设计与实现

    k8s自定义controller设计与实现 创建CRD 登录可以执行kubectl命令的机器,创建student.yaml apiVersion: apiextensions.k8s.io/v1bet ...

随机推荐

  1. python3.7+flask+alipay 支付宝付款功能

    文档参考github:https://github.com/fzlee/alipay/blob/master/docs/init.md 沙箱环境配置:https://opendocs.alipay.c ...

  2. P6624-[省选联考2020A卷]作业题【矩阵树定理,欧拉反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6624 题目大意 \(n\)个点的一张图,每条边有权值,一棵生成树的权值是所有边权和乘上边权的\(gcd\),即 ...

  3. Python代码阅读(第8篇):列表元素逻辑判断

    Python 代码阅读合集介绍:为什么不推荐Python初学者直接看项目源码 本篇阅读的三份代码的功能分别是判断列表中的元素是否都符合给定的条件:判断列表中是否存在符合给定的条件的元素:以及判断列表中 ...

  4. Markdown 编写技巧汇总(一)

    编写文档,有很多格式选择,也有不同平台选择.下面就自己接触到的MarkDown编写文档的各种技巧做简单梳理,供自己参阅,也希望帮到网友. [1]添加空格 ①   这种写法比较老土,但是,很实用!注意都 ...

  5. 图数据库Neo4j的基本使用及与SpringBoot集成

    Neo4j 官网地址:https://neo4j.com/ 下载地址:https://neo4j.com/download-center/#community 官方入门文档:https://neo4j ...

  6. JavaFx 监听剪切板实现(Kotlin)

    原文地址: JavaFx 监听剪切板实现(Kotlin) | Stars-One的杂货小窝 软件有个需求,想要实现监听剪切板的内容,若内容符合预期,则进行相关的操作,就可以免去用户手动粘贴的操作,提供 ...

  7. Python技法2:函数参数的进阶用法

    1.关键字参数(positional argument)和位置参数(keyword argument) Python函数的参数根据函数在调用时(注意,不是函数定义时)传参的形式分为关键字参数和位置参数 ...

  8. 试题 历届试题 翻硬币 java题解

    问题描述 小明正在玩一个"翻硬币"的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如 ...

  9. Java爬虫系列四:使用selenium-java爬取js异步请求的数据

    在之前的系列文章中介绍了如何使用httpclient抓取页面html以及如何用jsoup分析html源文件内容得到我们想要的数据,但是有时候通过这两种方式不能正常抓取到我们想要的数据,比如看如下例子. ...

  10. yum源安装nginx

    nginx使用yum源安装 安装步骤 使用yum源安装依赖 yum install yum-utils 配置nginx.repo的yum文件 vim /etc/yum.repos.d/nginx.re ...