洛谷题面传送门 & Atcoder 题面传送门

12 天以前做的题了,到现在才补/yun

做了一晚上+一早上终于 AC 了,写篇题解纪念一下

首先考虑如果全是 \(-1\)​ 怎么处理。由于我们不关心每个 pair 中的 max 是多少,并且显然每个 pair 的最小值都是两两不同的,因此我们可以考虑有多少个最小值组成的集合,然后答案乘上 \(n!\) 即可。而显然如果我们将“作为某个 pair 的最小值”的位置放上一个左括号,“不作为某个 pair 的最小值”的位置放上一个右括号,那么一个集合符合条件当且仅当这个集合对应的括号序列是一个合法括号序列,卡特兰数算算即可。

接下来思考存在某些数固定下来的情况怎么处理,显然我们可以将所有 pair 分为三类:\((-1,-1),(-1,x),(x,y)\),第三类的最小值显然是固定的,我们可以将这样的 \((x,y)\) 中的 \(x,y\) 设为访问过,然后只考虑那些没有访问过的元素。显然带上“某些值固定”这个限制条件后就无法直接套用组合数了,并且显然这个数据范围也不是让你纯组合数学就过的,因此考虑一个 DP。受到上面括号序列这个思想的启发,我们考虑这样一个过程:

  1. 我们考虑有一个长度为 \(m\) 的括号序列,你要在里面填上 \(m/2\) 个左括号和 \(m/2\)​ 个右括号,其中 \(m=2n-2\times\text{两个位置都已经确定了的 pair 的对数}\)
  2. 括号有方括号和圆括号之分,给定 \(k\)​ 个位置,填上的括号必须为方括号,另外 \(m-k\) 个位置填上的括号必须为圆括号。
  3. 填好左右括号之后,你要对于所有右方括号,在前面找一个左圆括号匹配,并且满足去掉这些已经匹配过的括号之后,剩下的括号在不分方括号和圆括号的情况下仍能组成一个合法括号序列

两个方案不同当且仅当括号序列不同或者存在某个右方括号,满足与其匹配的左圆括号位置不同。

够清晰的了吧

我们考虑 DP,事实证明正着 DP 是不好处理左圆括号与右方括号匹配这件事情的,因此考虑倒着 DP,\(dp_{i,j,k}\) 表示钦定了第 \(i\) 个位置到第 \(m\) 个位置上填括号的方案,还剩 \(j\) 个 ‘)’ 和 \(k\) 个 ‘]’ 没有匹配的方案数。那么考虑第 \(i-1\) 个位置:

  • 如果它只能填方括号:

    • 如果填左括号,那么它只能与圆括号匹配,\(dp_{i,j,k}\to dp_{i-1,j-1,k}\)
    • 如果填右括号,那么未匹配的 ‘)’ 个数加一,\(dp_{i,j,k}\to dp_{i-1,j+1,k}\)
  • 如果它只能填圆括号:
    • 如果填左括号,那么有两种可能,与圆括号匹配,由于这种情况是不在乎它与哪个圆括号匹配的,因此贡献只有 \(1\),即 \(dp_{i,j,k}\to dp_{i-1,j-1,k}\),或者它也可以与方括号匹配,显然每个左圆括号与哪个右方括号匹配都是不同的,因此有 \(k\) 种可能,\(dp_{i,j,k}·k\to dp_{i-1,j,k-1}\)
    • 如果填右括号,那么未匹配的 ‘)’ 个数加一,\(dp_{i,j,k}\to dp_{i-1,j,k+1}\)

随便推推即可,最终答案记得乘个 \(((n-m)/2)!\)。时空复杂度均 \(\mathcal O(n^3)\)​

const int MAXN=600;
const int MOD=1e9+7;
int n,a[MAXN+5],vis[MAXN+5],id[MAXN+5],m=0,is[MAXN+5];
int dp[MAXN+5][MAXN+5][MAXN+5];
void add(int &x,int v){((x+=v)>=MOD)&&(x-=MOD);}
int main(){
scanf("%d",&n);
for(int i=1;i<=n<<1;i++) scanf("%d",&a[i]);
for(int i=1;i<=n<<1;i+=2) if(~a[i]&&~a[i+1]) vis[a[i]]=vis[a[i+1]]=1;
for(int i=1;i<=n<<1;i++) if(!vis[i]) id[i]=++m;
for(int i=1;i<=n<<1;i+=2){
if(~a[i]&&!~a[i+1]) is[id[a[i]]]=1;
if(!~a[i]&&~a[i+1]) is[id[a[i+1]]]=1;
} dp[m+1][0][0]=1;
// for(int i=1;i<=m;i++) printf("%d\n",is[i]);
for(int i=m;i;i--) for(int j=0;j<=m-i;j++) for(int k=0;k+j<=m-i;k++){
if(is[i]){
add(dp[i][j][k+1],dp[i+1][j][k]);
if(j) add(dp[i][j-1][k],dp[i+1][j][k]);
} else {
add(dp[i][j+1][k],dp[i+1][j][k]);
if(k) add(dp[i][j][k-1],1ll*dp[i+1][j][k]*k%MOD);
if(j) add(dp[i][j-1][k],dp[i+1][j][k]);
} //printf("%d %d %d %d\n",i,j,k,dp[i][j][k]);
} int res=dp[1][0][0];
int cc=0;for(int i=1;i<=(n<<1);i+=2) cc+=((!~a[i])&&(!~a[i+1]));
for(int i=1;i<=cc;i++) res=1ll*res*i%MOD;
printf("%d\n",res);
return 0;
}
/*
6
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
*/

评测记录

Atcoder Grand Contest 030 F - Permutation and Minimum(DP)的更多相关文章

  1. Atcoder Grand Contest 034 F - RNG and XOR(FWT)

    Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会 ...

  2. Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)

    题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...

  3. Atcoder Grand Contest 003 F - Fraction of Fractal(矩阵乘法)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another AGC F,然鹅这次就没能自己想出来了-- 首先需注意到题目中有一个条件叫做"黑格子组成的连通块是四联通的&q ...

  4. JZOJ5405 & AtCoder Grand Contest 001 F. Permutation

    题目大意 给出一个长度为\(n\)的排列\(P\)与一个正整数\(k\). 你需要进行如下操作任意次, 使得排列\(P\)的字典序尽量小. 对于两个满足\(|i-j|>=k\) 且\(|P_i- ...

  5. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  6. Atcoder Grand Contest 010 C - Cleaning 树贪心(伪)

    C - Cleaning 题目连接: http://agc010.contest.atcoder.jp/tasks/agc010_c Description There is a tree with ...

  7. Atcoder Grand Contest 001 D - Arrays and Palindrome(构造)

    Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法, ...

  8. AtCoder Beginner Contest 122 D - We Like AGC (DP)

    D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Yo ...

  9. 【AGC030F】Permutation and Minimum(DP)

    题目链接 题解 首先可以想到分组后,去掉两边都填了数的组. 然后就会剩下\((-1,-1)\)和\((-1,x)\)或\((x,-1)\)这两种情况 因为是最小值序列的情况数,我们可以考虑从大到小填数 ...

随机推荐

  1. k8s replicaset controller分析(1)-初始化与启动分析

    replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...

  2. 跟着老猫一起来学GO,环境搭建

    老猫的GO学习系列博客已经正式发车了,相信大家以前学习一门编程语言的时候也有经验,咱们一般都是从环境开始,在此呢,大家也跟着老猫从最开始的搭建环境开始. GO语言的安装 首先呢,我们开始需要下载GO语 ...

  3. 【c++ Prime 学习笔记】目录索引

    第1章 开始 第Ⅰ部分 C++基础 第2章 变量和基本类型 第3章 字符串.向量和数组 第4章 表达式 第5章 语句 第6章 函数 第7章 类 第 Ⅱ 部分 C++标准库 第8章 IO库 第9章 顺序 ...

  4. js--数组的 fill() 填充方法详解

    前言 我们知道了很多了初始化数组的方法,但是初始化数组之后,数组中的每一项元素默认为 empty 空位占位,如何对数组这些空位添加默认的元素,ES6提供了 fill() 方法实现这一操作.本文总结数组 ...

  5. 攻防世界 web3.backup

    如果网站存在备份文件,常见的备份文件后缀名有:.git ..svn..swp..~..bak..bash_history..bkf尝试在URL后面,依次输入常见的文件备份扩展名. ip/index.p ...

  6. Vue 基础自查——watch、computed和methods的区别

    1 前言 创建一个Vue实例时,可以传入一个选项对象 const vm = new Vue({ data: { msg: 'hello' }, computed: {}, methods: {}, w ...

  7. etcd安装常用操作

    etcd安装 etcd 是基于 Raft 的分布式 key-value 存储系统,由 CoreOS 开发,常用于服务发现.共享配置以及并发控制(如 leader 选举.分布式锁等).kubernete ...

  8. RabbitMQ的安装及入门使(Windows)

    1.安装Erlang所以在安装rabbitMQ之前,需要先安装Erlang .点击下载Erlang 执行下载下来的Erlang,全部点击"下一步"就行.安装完成设置一下环境变量. ...

  9. 【java+selenium3】自动化处理文件上传 (十三)

    一.文件上传 文件上传是自动化中棘手的部分,目前selenium并没有提供上传的实现api,所以知道借助外力来完成,如AutoIt.sikuli. AutoIt , 这是一个使用类似BASIC脚本语言 ...

  10. Webshell 一句话木马

    Webshell介绍 什么是 WebShell webshell就是以asp.php.jsp或者cgj等网页文件形式存在的一种命令执行环境,也可以将其称做为一种网页后门 由于 webshell其大多是 ...