洛谷 P5299 - [PKUWC2018]Slay the Spire(组合数学+dp)
hot tea 啊……这种风格及难度的题放在省选 D2T1 左右还是挺喜闻乐见的罢
首先考虑对于固定的 \(m\) 张牌怎样求出最优的打牌策略,假设我们抽到了 \(p\) 张强化牌,攻击力从大到小分别为 \(x_1,x_2,\cdots,x_p\),以及 \(q\) 张攻击牌,攻击力从大到小分别为 \(y_1,y_2,\cdots,y_q\),显然如果 \(q=0\) 那就没得打了,总攻击力显然为 \(0\),否则你手玩几组数据就能发现我们肯定会尽量打强化牌直到没有强化牌或者只能再打 \(1\) 张牌为止,打完了强化牌再打攻击牌,证明就套路地用下 exchange arguments,假设现在我们选择了 \(s(s<p)\) 张强化牌与 \(t(t\ge 2)\) 张攻击牌,那么造成的伤害的最大值显然为 \(W_1=\prod\limits_{i=1}^sx_i\sum\limits_{j=1}^ty_j\),考虑多打一张攻击牌,那么造成的伤害就变为 \(W_2=\prod\limits_{i=1}^{s+1}x_i\sum\limits_{j=1}^{t-1}y_j\),这里做差不太容易,故考虑做商,\(\dfrac{W_2}{W_1}=x_{s+1}\times\dfrac{\sum\limits_{j=1}^ty_j}{\sum\limits_{j=1}^{t+1}y_j}\),由于 \(t\ge 2\) 且 \(y_j\ge y_{j+1}\),故一定有 \(y_{t+1}\le\sum\limits_{j=1}^ty_j\),故 \(\dfrac{\sum\limits_{j=1}^ty_j}{\sum\limits_{j=1}^{t+1}y_j}\le\dfrac{1}{2}\),而题目规定 \(x_i\ge 2\),故 \(\dfrac{W_2}{W_1}\ge 1\),即 \(W_2\ge W_1\),因此我们的策略是最优的。
接下来将这个结论应用于原题,首先将所有强化牌和攻击牌按从大到小顺序排序。考虑将选择的 \(m\) 张牌中强化牌与攻击牌的数量分为两类:强化牌数量 \(<k-1\) 和 \(\ge k-1\)。我们预处理 \(dp1_{i,j}\) 表示在前 \(i\) 张强化牌中选择 \(j\) 张强化牌,并且强化牌 \(i\) 必须被选择,所有选牌方案的强化牌上值的乘积之和,再预处理 \(dp2_{i,j}\) 表示在前 \(i\) 张攻击牌中选 \(j\) 张,所有选牌方案的值之和的和。对于强化牌数量 \(\le k-1\) 的情况,我们枚举以下三个量:选择的强化牌数量 \(c\in[0,k-2]\)、最后一个(这里及下文中的“最后一个”指下标最大)被选择的强化牌编号 \(i\),以及最后一个被打出去的攻击牌的编号 \(j\),剩下 \(m-k\) 张牌显然只能在剩余 \(n-j\) 张攻击牌中选,产生的贡献为 \(dp1_{i,c}\times dp2_{j,k-c}\times\dbinom{n-j}{m-k}\),\(i\) 的那一维显然可以前缀和优化掉,复杂度 \(n^2\)。对于强化牌数量 \(>k-1\) 的情况,我们枚举最后一个被打出去的强化牌的编号 \(i\),以及唯一一个被出去的攻击牌的编号 \(j\),剩余 \(m-k\) 张牌可以在剩余 \(n-i\) 张强化牌和 \(n-j\) 张攻击牌中选,产生的贡献就是 \(dp1_{i,k-1}\times b_j\times\dbinom{2n-i-j}{m-k}\),随便枚举一下算一算即可。
最后就是怎样预处理 \(dp1_{i,j},dp2_{i,j}\) 的问题了,其实非常容易,显然有 \(dp\) 方程 \(dp1_{i,j}=\sum\limits_{k=0}^{i-1}dp1_{k,j-1}\times a_i\),\(dp2_{i,j}=\sum\limits_{k=0}^{i-1}dp2_{k,j-1}+a_i\times\dbinom{i-1}{j-1}\),\(\sum\) 那一维显然可以前缀和优化掉,复杂度平方,于是这题就做完了。
const int MAXN=3000;
const int MOD=998244353;
int n,m,k,a[MAXN+5],b[MAXN+5],c[MAXN*2+5][MAXN*2+5];
bool cmp(int lhs,int rhs){return lhs>rhs;}
int dpa[MAXN+5][MAXN+5],sdpa[MAXN+5][MAXN+5];
int dpb[MAXN+5][MAXN+5],sdpb[MAXN+5][MAXN+5];
void solve(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
sort(a+1,a+n+1,cmp);sort(b+1,b+n+1,cmp);
dpa[0][0]=sdpa[0][0]=1;
for(int i=1;i<=n;i++){
sdpa[i][0]=1;
for(int j=1;j<=i;j++){
dpa[i][j]=1ll*a[i]*sdpa[i-1][j-1]%MOD;
sdpa[i][j]=(sdpa[i-1][j]+dpa[i][j])%MOD;
// printf("%d %d %d\n",i,j,dpa[i][j]);
}
}
for(int i=1;i<=n;i++) for(int j=1;j<=i;j++){
dpb[i][j]=(1ll*b[i]*c[i-1][j-1]%MOD+sdpb[i-1][j-1])%MOD;
sdpb[i][j]=(sdpb[i-1][j]+dpb[i][j])%MOD;
// printf("%d %d %d\n",i,j,dpb[i][j]);
} int ans=0;
for(int i=0;i<k-1;i++) for(int j=1;j<=n;j++)
ans=(ans+1ll*sdpa[n][i]*dpb[j][k-i]%MOD*c[n-j][m-k])%MOD;
for(int i=0;i<=n;i++) for(int j=1;j<=n;j++) if(2*n-i-j>=0)
ans=(ans+1ll*dpa[i][k-1]*b[j]%MOD*c[2*n-i-j][m-k])%MOD;
printf("%d\n",ans);
}
int main(){
for(int i=0;i<=MAXN*2;i++){
c[i][0]=1;
for(int j=1;j<=i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
}
int qu;scanf("%d",&qu);while(qu--) solve();
return 0;
}
洛谷 P5299 - [PKUWC2018]Slay the Spire(组合数学+dp)的更多相关文章
- 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)
洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...
- [LOJ2538][PKUWC2018]Slay the Spire:DP
分析 学会新姿势!我们可以通过调整DP顺序来体现选取物品的优先顺序! 显然选取强化牌的最优策略是倍数从高到低,能选就选,最多选\(k-1\)张,选取攻击牌的最优策略是伤害从高到低,尽量少选,但最少选\ ...
- 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...
- BZOJ.5467.[PKUWC2018]Slay the Spire(DP)
LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...
- 洛谷 P4708 - 画画(Burnside 引理+组合数学)
洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计 ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
随机推荐
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
- Vue CLI 5 和 vite 创建 vue3.x 项目以及 Vue CLI 和 vite 的区别
这几天进入 Vue CLI 官网,发现不能选择 Vue CLI 的版本,也就是说查不到 vue-cli 4 以下版本的文档. 如果此时电脑上安装了 Vue CLI,那么旧版安装的 vue 项目很可能会 ...
- OO面向对象第三次作业总结
面向对象第三次作业总结 一.JML基础梳理及工具链 注释结构 行注释://@annotation 块注释:/*@ annotation @*/ 两种注释都是放在被注释部分上面. 常见表达式 原子表达式 ...
- 经典200例-002 为项目添加DLL文件引用
项目右击,添加引用,(或菜单栏选择"项目","添加引用"),COM选项卡 复制去Google翻译翻译结果
- 测试开发【提测平台】分享13-远程搜索和路由$route使用实现新建提测需求
微信搜索[大奇测试开],关注这个坚持分享测试开发干货的家伙. 本篇继续提测平台开发,按惯例先给出学习的思维导图,以便快速了解学习知识和平台功能实现的重点. 基本知识点学习 远程搜索 显示的数据通过输入 ...
- 恶意代码分析实战五:OllyDebug动态结合
目录 恶意代码分析实战五:OllyDebug动态结合 OllyDebug界面介绍 OllyDebug载入程序方法 OllyDebug地址跳转 OllyDebug下断点 OllyDebug单步执行 Ol ...
- Dubbo之负载均衡、并发控制、延迟暴露、连接控制
1.并发控制 dubbo服务端和消费端都做了并发控制,分别在配置中有相应的对应配置: 服务端:executes服务提供者每服务每方法最大可并行执行请求数,控制并发数量:actives每服务消费者每服务 ...
- GoLang设计模式13 - 观察者模式
观察者模式是一种行为型设计模式.这种模式允许一个实例(可以称为目标对象)发布各种事件(event)给其他实例(观察者).这些观察者会对目标对象进行订阅,这样每当目标对象发生变化时,观察者就会收到事件( ...
- OpenHarmony LiteOS C-SKY指令集移植指北
摘要:本文介绍在OpenHarmony社区LiteOS-M项目中新增C-SKY指令集的开发流程,以及适配相应qemu工程的方法和步骤,供LiteOS内核相关开发者学习交流. 本文分享自华为云社区< ...
- 7-7 后缀式求值 (25分)的python实现
exp=input().split() ls=list() def Cal(a,b,i): if i=="+": return a+b elif i=="-": ...