Atcoder Grand Contest 022 E - Median Replace(dp)
首先考虑对于固定的 01 串怎样计算它是否可以通过将三个连续的 \(0\) 或 \(1\) 替换为其中位数得到。我们考虑单调栈,新建一个栈,栈底到栈顶分别是一段连续的 \(1\) 和一段连续的 \(0\),分别表示当前未合并完的字符,我们从左往右扫描,每遇到一个字符可分以下两种情况:
如果我们遇到一个 \(0\):
如果栈为空,那直接将这个 \(0\) 入栈就好了。
如果栈顶 \(0\) 的个数 \(\ge 2\),那么显然我们可以把三个连续的 \(0\) 合并成一个 \(0\),因为不论我们后来加入什么样的数字,这样一一合并下去最终只可能得到一个 \(0\),也就是说原来栈顶的两个 \(0\) 变成了一个 \(0\)。
如果栈顶没有 \(0\),否则直接将这个 \(0\) 入栈。
如果我们遇到一个 \(1\):
如果栈为空,那直接将这个 \(1\) 入栈就好了。
如果栈顶有 \(0\),并且栈不为空,那么栈最顶上的两个元素一定是一个 \(0\) 一个 \(1\),而显然如果第一个数是 \(0\),第二个数是 \(1\),那第三个数不论是多少,取中位数得到的结果一定还是第三个数,所以我们索性将最开头的 \(01\) 抵消,也就是说栈中 \(0\) 的个数减少了 \(1\),此时栈底到栈顶还是一段连续的 \(1\) 和一段连续的 \(0\)。
否则,栈中一定只剩一段连续的 \(1\)。如果这段 \(1\) 的个数 \(\ge 3\),仿照之前的推理过程它可以等效于 \(3\) 个 \(1\),否则我们就直接将 \(1\) 入栈。
显然最终栈不为空,并且该 01 串 \(s\) 满足条件的充要条件是最后 \(1\) 的个数大于 \(0\) 的个数,因为如果在合并过程中不存在栈中剩余 \(\ge 3\) 个 \(1\),并且又进来了一个 \(1\) 的情况,那么每次操作栈内数的个数要么 \(+1\) 要么 \(-1\),而 \(n\) 为奇数,故最后栈中剩余数的个数是奇数。如果只剩一个 \(1\) 那就直接满足条件了,如果剩 \(2\) 个 \(1\) 一个 \(0\) 或者 \(3\) 个 \(1\) 把这三个数合并一下即可,如果剩 \(3\) 个 \(1\) 两个 \(0\) 根据抽屉原理一定存在连续的三个数中恰好有 \(2\) 个 \(1\),把这三个数合并得到一个 \(1\),再把剩下三个数合并即可。如果在合并过程中存在栈中剩余 \(\ge 3\) 个 \(1\),并且又进来了一个 \(1\) 的情况,那么最终这三个 \(1\) 一定不会被消掉,也就是说最终 \(1\) 的个数为 \(3\),严格大于 \(0\) 的个数的最大值 \(2\),也符合题意。
接下来考虑原题。不难发现任何时刻单调栈中 \(1\) 的个数 \(\le 3\),\(0\) 的个数 \(\le 2\),也就是说本质不同的单调栈的个数 \(\le 12\)。我们考虑将单调栈放入 DP 状态中,即设 \(dp_{i,x,y}\) 表示考虑到第 \(i\) 个字符,单调栈中还剩 \(x\) 个 \(0\) 和 \(y\) 个 \(1\) 的方案数。分该位填 \(0\) 和该位填 \(1\) 转移即可。复杂度线性。
const int MAXN=3e5;
const int MOD=1e9+7;
int n,dp[MAXN+5][3][4];char s[MAXN+5];
void add(int &x,int v){((x+=v)>=MOD)&&(x-=MOD);}
int main(){
scanf("%s",s+1);n=strlen(s+1);dp[0][0][0]=1;
for(int i=0;i<n;i++) for(int c0=0;c0<3;c0++) for(int c1=0;c1<4;c1++){
if(s[i+1]!='1'){//digit 0
if(c0==2) add(dp[i+1][1][c1],dp[i][c0][c1]);
else add(dp[i+1][c0+1][c1],dp[i][c0][c1]);
} if(s[i+1]!='0'){//digit 1
if(c0) add(dp[i+1][c0-1][c1],dp[i][c0][c1]);
else add(dp[i+1][c0][min(c1+1,3)],dp[i][c0][c1]);
}
} int ans=0;
for(int c1=1;c1<=3;c1++) for(int c0=0;c0<c1;c0++)
add(ans,dp[n][c0][c1]);
printf("%d\n",ans);
return 0;
}
Atcoder Grand Contest 022 E - Median Replace(dp)的更多相关文章
- Atcoder Grand Contest 002 F - Leftmost Ball(dp)
Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...
- AtCoder Grand Contest 032 A - Limited Insertion( 思维)
Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Snuke has an empty ...
- Atcoder Grand Contest 006 D - Median Pyramid Hard(二分+思维)
Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \ ...
- Atcoder Grand Contest 001 F - Wide Swap(拓扑排序)
Atcoder 题面传送门 & 洛谷题面传送门 咦?鸽子 tzc 来补题解了?奇迹奇迹( 首先考虑什么样的排列可以得到.我们考虑 \(p\) 的逆排列 \(q\),那么每次操作的过程从逆排列的 ...
- Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)
洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...
- Atcoder Grand Contest 013 E - Placing Squares(组合意义转化+矩阵快速幂/代数推导,思维题)
Atcoder 题面传送门 & 洛谷题面传送门 这是一道难度 Cu 的 AGC E,碰到这种思维题我只能说:not for me,thx 然鹅似乎 ycx 把题看错了? 首先这个平方与乘法比较 ...
- Atcoder Grand Contest 032 E - Modulo Pairing(乱搞+二分)
Atcoder 题面传送门 & 洛谷题面传送门 神仙调整+乱搞题. 首先某些人(including me)一看到最大值最小就二分答案,事实上二分答案对这题正解没有任何启发. 首先将 \(a_i ...
- 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)
题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...
- AtCoder Grand Contest 022
A - Diverse Word Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement Gotou ...
随机推荐
- Codeforces Round #748 (Div. 3)
Codeforces Round #748 (Div. 3) A. Elections 思路分析: 令当前值比最大值大即可,如果最大值是它自己,就输出\(0\) 代码 #include <bit ...
- JVM:内存溢出OOM
JVM:内存溢出OOM 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 经典错误 JVM 中常见的两个 OOM 错误 StackoverflowError:栈溢出 ...
- 【二食堂】Beta - Scrum Meeting 12
Scrum Meeting 12 例会时间:5.27 20:00~20:10 进度情况 组员 当前进度 今日任务 李健 1. 知识图谱导出功能完成 issue 1. 继续完成文本保存的工作 issue ...
- VUE调用子窗口弹窗或组件弹窗,关闭弹窗刷新父级页面主页面,通过this.$emit来实现
this.$emit是父级向自己传值 第一步在父级页面创建自己页面的引用 <template> <div> <edit ref="edit" @ref ...
- Machine learning (6-Logistic Regression)
1.Classification However, 2.Hypothesis Representation Python code: import numpy as np def sigmoid(z) ...
- SpringBoot:Spring容器的启动过程
一.简述 Spring的启动过程就是IoC容器的启动过程,本质上就是创建和初始化Bean的工厂(BeanFactory),BeanFactory是整个SpringIoC的核心,Spring使用Bean ...
- SpringCloud 2020.0.4 系列之Hystrix看板
1. 概述 老话说的好:沉默是金,有时适当的沉默,比滔滔不绝更加有效. 言归正传,前面我们聊了有关 Hystrix 降级熔断的话题,今天我们来聊聊如何使用 turbine 和 hystrix dash ...
- fatal error: sqlite3.h: No such file or directory
编译带有sqlite3的数据库c语言程序时,出现fatal error: sqlite3.h: No such file or directory,找不到头文件的问题.应该是是系统没有安装函数库. 在 ...
- oracle 定时任务增、删、改、查
增: 创建一个计划任务 begin sys.dbms_job.submit(job=>:job, what=>'要定时执行的存储过程名:',--例如:包名.存储过程名; 记得写分号 ne ...
- swoole、swoft环境配置
一.服务器环境 1.lnmp wget http://soft.vpser.net/lnmp/lnmp1.5.tar.gz -cO lnmp1.5.tar.gz && tar zxf ...