Codeforces 题面传送门 & 洛谷题面传送门

首先注意到这个图的特殊性:我们对于所有 \(s_i=s_j\)​ 的 \((i,j)\)​ 之间都连了条边,而字符集大小顶多只有 \(8\)​,因此当 \(n\)​ 比较大时这张图肯定是相当稠密的,故我们猜测这个直径长度肯定也不会太长。事实的确如此,具体来说,对于图上任意两个点 \(i,j\)​,它们之间最短距离的长度肯定不会超过 \(15\)​,具体证明大概就对于每一对字母 \((x,y)\)​,如果存在某两个位置 \(i,i+1\) 满足 \(s_i=x,s_{i+1}=y\) 那么我们就在 \(x,y\) 之间连一条无向边。那么显然得到的大小为 \(s\text{中出现过的字符个数}\) 的图是连通图,故 \(\forall i,j\),\(s_i,s_j\) 在图上的距离不会超过 \(7\),而对于图上的一个大点(也就是每一种字母缩成的一个点),其包含的所有小点两两之间的最短距离恰好为 \(1\),也就是说,对于我们缩点后形成的图,我们假设我们找到了一条路径 \(v_1\to v_2\to\cdots\to v_k\),那么我们最多只用花 \(1\) 的代价实现从 \(v_{k-1}\to v_k\) 这条边到达 \(v_k\to v_{k+1}\) 这条边。因此这个最短距离的上界就是 \(8+7=15\)。

接下来我们考虑探究一下两点 \(i,j\) 之间的最短路是什么。不妨假设 \(i<j\),那么从 \(i\) 到达 \(j\) 有两种选择,要么一直往右走,步数 \(j-i\),要么经过某条连接两个不相邻的点的边,而这可以视作,选择某种字符 \(c\),然后从 \(i\) 走到某个字符为 \(c\) 的点,然后 \(j\) 也走到某个字符为 \(c\) 的点,然后再花费 \(1\) 的代价连接这两个字符为 \(c\) 的点,那么我们记 \(dis_{i,c}\) 表示 \(i\) 到达字符为 \(c\) 的点的最小代价。\(dis_{i,c}\) 可以通过用建虚点的技巧,也就是对于每个字符建一个虚点,然后对于所有字符为 \(c\) 的点,连一条该点到该字符对应的虚点,权值为 \(1\) 的边以及该字符对应的虚点到该点,权值为 \(0\) 的边,再使用多源 01bfs 在 \(\mathcal O(8n)\) 的时间内求出。这样我们即可在 \(\mathcal O(1)\) 的时间内计算两个点的最短距离,即 \(dis(i,j)=\min(j-i,dis_{j,k}+dis_{i,k}+1)\),这样暴力枚举是平方的,不过注意到一个性质,就是如果 \(j-i>15\),那么显然这个 \(\min\) 会取到后者,因此对于 \(j-i\le 15\) 我们考虑暴力枚举,\(j-i>15\) 的情况,注意到如果我们设 \(disc_{c1,c2}\) 为所有 \(s_i=c1\) 的点中 \(dis_{i,c2}\) 的最小值,那么必然有 \(dis_{i,c}-disc_{s_i,c}\in\{0,1\}\)。因此我们考虑在枚举的过程中将这个状态用一个 \(8\) 位二进制数记录下来,具体来说我们对于每个 \(i\) 记录一个 \(8\) 位二进制数 \(S\),\(S\) 的第 \(c\) 位为 \(1\) 表示 \(dis_{i,c}-disc_{s_i,c}=1\),否则 \(dis_{i,c}-disc_{s_i,c}=0\),然后我们在枚举的过程中开一个桶 \(cnt_{j,S}\) 表示前面有多少个 \(s_i=j\) 且 \(j\) 的状态为 \(S\),然后对于前面的答案就暴力对所有 \(j,S\) 批量处理答案即可。

时间复杂度 \(\mathcal O(8192·n)\),由于完全卡不满,可以通过此题。

const int MAXN=1e5;
const int MAXP=256;
const int INF=1061109567;
int n,cnt[MAXP+2][9];char s[MAXN+5];
int dis[MAXN+15][9],disc[9][9],res=0;ll resc=0;
void merge(int x,int y){
// printf("%d %d\n",x,y);
if(x>res) res=x,resc=y;
else if(x==res) resc+=y;
}
int main(){
scanf("%d%s",&n,s+1);
memset(dis,63,sizeof(dis));memset(disc,63,sizeof(disc));
for(int i=0;i<8;i++){
deque<int> q;
for(int j=1;j<=n;j++) if(s[j]-'a'==i) dis[j][i]=0,q.push_back(j);
while(!q.empty()){
int x=q.front();q.pop_front();
if(x<=n){
if(x-1>=1&&dis[x-1][i]==INF) dis[x-1][i]=dis[x][i]+1,q.push_back(x-1);
if(x+1<=n&&dis[x+1][i]==INF) dis[x+1][i]=dis[x][i]+1,q.push_back(x+1);
if(dis[s[x]-'a'+n+1][i]==INF) dis[s[x]-'a'+n+1][i]=dis[x][i]+1,q.push_back(s[x]-'a'+n+1);
} else {
for(int j=1;j<=n;j++) if(s[j]-'a'==x-n-1)
if(dis[j][i]>=dis[x][i]) dis[j][i]=dis[x][i],q.push_front(j);
}
} for(int j=1;j<=n;j++) chkmin(disc[s[j]-'a'][i],dis[j][i]);
// for(int j=1;j<=n;j++) printf("%d%c",dis[j][i]," \n"[j==n]);
}
// for(int i=0;i<8;i++) for(int j=0;j<8;j++)
// printf("%d%c",disc[i][j]," \n"[j==7]);
for(int i=1;i<=n;i++){
for(int j=max(1,i-15);j<=i;j++){
int mn=i-j;
for(int k=0;k<8;k++) chkmin(mn,dis[j][k]+dis[i][k]+1);
merge(mn,1);
} if(i-16>=1){
int msk=0;
for(int j=0;j<8;j++) msk|=(dis[i-16][j]-disc[s[i-16]-'a'][j])<<j;
cnt[msk][s[i-16]-'a']++;
} for(int j=0;j<MAXP;j++) for(int k=0;k<8;k++) if(cnt[j][k]){
int mn=INF;
for(int l=0;l<8;l++) chkmin(mn,dis[i][l]+disc[k][l]+(j>>l&1)+1);
merge(mn,cnt[j][k]);
}
} printf("%d %lld\n",res,resc);
return 0;
}

Codeforces 718E - Matvey's Birthday(思维题)的更多相关文章

  1. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. Codeforces 515C 题解(贪心+数论)(思维题)

    题面 传送门:http://codeforces.com/problemset/problem/515/C Drazil is playing a math game with Varda. Let’ ...

  3. Codeforces 1188B - Count Pairs(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...

  4. Codeforces 1365G - Secure Password(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 首先考虑一个询问 \(20\) 次的方案,考虑每一位,一遍询问求出下标的这一位上为 \(0\) 的位置上值的 bitwise or,再一遍 ...

  5. Codeforces 1129E - Legendary Tree(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 考虑以 \(1\) 为根,记 \(siz_i\) 为 \(i\) 子树的大小,那么可以通过询问 \(S=\{2,3,\cdots,n\}, ...

  6. CodeForces - 427A (警察和罪犯 思维题)

    Police Recruits Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Sub ...

  7. codeforces 848B Rooter's Song 思维题

    http://codeforces.com/problemset/problem/848/B 给定一个二维坐标系,点从横轴或纵轴垂直于发射的坐标轴射入(0,0)-(w,h)的矩形空间.给出点发射的坐标 ...

  8. Codeforces 729D Sea Battle(简单思维题)

    http://codeforces.com/contest/738/problem/D https://www.cnblogs.com/flipped/p/6086615.html   原 题意:海战 ...

  9. @codeforces - 718E@ Matvey's Birthday

    目录 @description@ @solution@ @accepted code@ @detail@ @description@ 给定一个长度为 n 的字符串 s,保证只包含前 8 个小写字母 ' ...

随机推荐

  1. spyglass DFT

    SolvNet spyglass clock_11 内部 generated clocks 在shift mode 不被 testclock 控制. Fix View the Incremental ...

  2. 3.4 Common Principles 通用原则

    3.4 Common Principles 通用原则 Before going into details, let's see some overall DDD principles; 在讨论细节之前 ...

  3. SharkCTF2021 fastcalc题记

    web --> python脚本编写练习. 直接访问发现全是乱码: 看包发现Content-Type里面没有charset=utf-8. 于是用python访问一下,用.encoding='ut ...

  4. Python 语法错误 except Exception, e: ^ SyntaxError: invalid syntax

    出这个问题是因为python2和python3 语法有些不同 python2 和 3 处理 except 子句的语法有点不同,需要注意: Python2 try: print ("hello ...

  5. 修改 openssh 版本号

    1.查看 sshd 位置 #which sshd 2.查看 /usr/sbin/sshd(二进制文件) 内容 #strings /usr/sbin/sshd | grep nicai 3.修改版本号, ...

  6. # Host xx.xxx.x.xxx found: line 1 /root/.ssh/known_hosts updated. Original contents retained as /root/.ssh/known_hosts.old

    一直可以ssh登录远程服务器,突然不行了. 原因:远程服务器最近打过安全补丁,安全标识已经更新. 清理本机的安全密匙即可 解决办法: #ssh-keygen -R "需要远程服务器ip地址& ...

  7. 【Go语言学习笔记】Go语言的基础语法

    上一篇已经说了,Go的语法和C的很接近,直接看看异同即可. 变量 变量名还是一样,字母或下划线开头,区分大小写.不能是关键字. Go定义了int32和int64这种类型来显示声明大小,和C里面的sho ...

  8. RedHat 7.0 下 FTP 服务的安装,启动,配置,以及虚拟用户的建立

    (注意! 区分shell命令和往配置文件里加的代码不同) 一:ftp服务的安装,启动和启用.   1:vim /etc/sysconfig/selinux     改为disabled后重启     ...

  9. Windows 常用配置

    安装IIS服务器 在服务器管理器中,选择"角色"添加角色 进入添加角色向导,在安装界面,选择服务器角色为:" Web服务器(IIS) " 角色服务勾选:应用程序 ...

  10. Mysql教程:(三)运算符:数学运算符

    运算符:数学运算符 mysql> select class,number,maths,maths+5 from score; mysql>select class,number,chine ...