[R] 如何绘制各样本的pathway丰度热图?
前言
一般而言,我们做完pathway富集分析,就做下气泡图或bar图来进行展示,但它们实际上只考虑了富集因子和Pvalue。如果我们不关注这两个因素,而是在乎样本本身的pathway丰度呢?
对于KEGG热图绘制,大部分是做到KO层级,因为基因/蛋白和KO的绝大部分都是一对一的对应关系。如果一定要做Pathway的丰度热图呢?一般的方法是将该通路中的基因/蛋白的丰度进行累加来表示该pathway的丰度。
好了,现在我们来计算并绘制热图吧。
数据处理
得到pathway富集分析结果文件一般是这样的:
Proteins字段中的基因/蛋白是用分号隔开的。
> colnames(path)
[1] "X.Pathway" "Sample1..1113." "Sample2..15327." "Pvalue" "Pathway.ID" "Level1"
[7] "Level2" "Proteins" "KOs"
除此之外,我们还需要一个基因表达矩阵:
四组样本,每组3个重复,共12个。
我们的目标就是整理成这样的table,用来绘制热图:
从两个表可知,数据处理关键就是pathway中的蛋白丰度求和。把pathway中对应的各蛋白展开,再匹配到表达矩阵上,最后归并求和就好了,思路清晰了就动手吧。
library(tidyverse)
path2 <- path %>% dplyr::select(X.Pathway,Level1,Level2,Proteins)
#下面这一步最关键,dplyr中为我们提供了一个有用的函数unnest
path3 <- path2 %>% mutate(ProteinID = strsplit(Proteins, ";")) %>% unnest()
colnames(path3)[1] <- "Pathway"
#如果不熟悉,这一步也可用Map函数配合do.call来完成:
out <- do.call(rbind, Map(cbind, path2$X.Pathway,path2$Level1,path2$Level2,strsplit(path2$Proteins, ";")))
out <- as.data.frame(out)
colnames(out) <- colnames(path2)
得到的结果是这样的:
Proteins列中的蛋白都一一和Pathway对应起来了。后面就好办了,直接贴代码:
#sum scale
ibaq2 <- sweep(ibaq,2,apply(ibaq, 2, sum),FUN = "/")
#caculate each group mean value
group <- factor(rep(c("S01CC","S11SC","S12CC","S12SC"),each=3),levels = c("S11SC","S12SC","S12CC","S01CC"))
out <- apply(ibaq2,1,function(x){
dat <- data.frame(group=group,value=x)
dat_mean <- dat %>% group_by(group) %>% summarise(mean=mean(value)) %>% select(mean)
}) #注意此处计算均值未用na.rm参数
out[[1]]
out2 <- as.data.frame(t(do.call(cbind,out)))
colnames(out2) <- levels(group)
rownames(out2) <- rownames(ibaq2)
exp <- data.frame(ProteinID=rownames(out2),out2)
data1 <- left_join(path3,exp,by="ProteinID") %>% dplyr::select(1:3,6:9) %>%
gather(Sample,Abundance,-c(Pathway,Level1,Level2)) %>%
group_by(Pathway,Sample) %>% summarise(Sum=sum(Abundance)) %>%
spread(Sample,Sum)
tmp <- path3[1:3]
annotation <- tmp[!duplicated(tmp),]
length(intersect(data1$Pathway,annotation$Pathway))
#先按pathway排序,再按level2,level1排序
plotdat <- left_join(annotation,data1,by="Pathway") %>%
arrange(Pathway) %>%
arrange(Level2) %>% arrange(Level1)
现在已经得到想要的数据了。
绘图
这个就不用多解释了。
library(pheatmap)
Exp_log2=plotdat #实际上我中间处理了别的,这里便于绘图直接赋值
colnames(Exp_log2)
exp_plot <- select(Exp_log2,S11SC,S12SC,S12CC,S01CC)
rownames(exp_plot) <- Exp_log2$Pathway
annotation_row <- select(Exp_log2,Level2,Level1)
rownames(annotation_row) <- Exp_log2$Pathway
pheatmap(exp_plot,cluster_rows = F,cluster_cols = F,scale = "row",
annotation_row = annotation_row,
border_color = NA,
#angle_col=45,
color = colorRampPalette(c("blue","white","red"))(50))
图片大概成这样:
根据需要挑选一些pathway展示吧,太多不好看。
Ref: https://stackoverflow.com/questions/28719088/r-semicolon-delimited-a-column-into-rows
[R] 如何绘制各样本的pathway丰度热图?的更多相关文章
- RNA_seq 热图绘制
若已经拿到表达矩阵exprSet 若差异较大,进行log缩小不同样本的差距 1.热图全体 1 ##加载包 2 library(pheatmap) 3 4 ##缩小表达量差距 5 exprSet < ...
- R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以 ...
- R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角impo ...
- R语言学习 - 热图绘制heatmap
生成测试数据 绘图首先需要数据.通过生成一堆的向量,转换为矩阵,得到想要的数据. data <- c(1:6, 6:1, 6:1, 1:6, (6:1)/10, (1:6)/10, (1:6)/ ...
- 一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?" ...
- 用R包中heatmap画热图
一:导入R包及需要画热图的数据 library(pheatmap) data<- read.table("F:/R练习/R测试数据/heatmapdata.txt",head ...
- pheatmap绘制“热图”,你需要的都在这
热图可以聚合大量的数据,并可以用一种渐进色来优雅地表现,可以很直观地展现数据的疏密程度或频率高低. 本文利用R语言 pheatmap 包从头开始绘制各种漂亮的热图.参数像积木,拼凑出你最喜欢的热图即可 ...
- html5 canvas绘制环形进度条,环形渐变色仪表图
html5 canvas绘制环形进度条,环形渐变色仪表图 在绘制圆环前,我们需要知道canvas arc() 方 ...
- 解读人:刘佳维,Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins(谱图聚类改善了低丰度蛋白的无标记定量)
发表时间:(2019年4月) IF:3.95 单位: 维也纳医科大学: 欧洲生物信息研究所(EMBL-EBI): 分子病理学研究所: 奥地利科学院分子生物技术研究所: Gregor Mendel分子植 ...
随机推荐
- Scrum Meeting 最终总结
[软工小白菜]Scrum Meeting 最终总结 2020/4/28 一.会议内容 1.工作及计划 组员代号 完成的工作 明日计划 炎龙 1.整合了整个程序,生成了apk并且上传审核 无 风鹰 1. ...
- matplotlib.legend()函数用法
用的较多,作为记录 legend语法参数如下: matplotlib.pyplot.legend(*args, **kwargs) 几个暂时主要用的参数: (1)设置图例位置 使用loc参数 plt. ...
- vim实用插件
转载:Vim 实用插件推荐(2017) - 知乎 (zhihu.com) 1.插件管理器 ----------------------------------------- Vundle.vim - ...
- jquery正则表达式验证【是否带有小数、是否中文名称组成、是否全由8位数字组成、电话码格式、邮件地址】
1 <form name="myform" action="" onsubmit="return fun1()"> 2 < ...
- hdu 1166 敌兵布阵(单点更新,区间查询)
题意: N个工兵营地.工兵营地里的人数分别为:a1,a2,....aN Add i,j:第i个工兵营地里增加j人 Sub i,j:第i个工兵营地里减少j人 Query i,j:查询第i个第j个工兵营地 ...
- 近期业务大量突增微服务性能优化总结-3.针对 x86 云环境改进异步日志等待策略
最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...
- 01_WPF概述
目录 Windows 图形演化 高级API 分辨率无关性 WPF体系结构 我的微信公众号 Windows 图形演化 在 WPF 之前,windows 开发一直使用本质上相同的显示技术.每个传统 win ...
- Notepad++ 过滤注释行和空行
Notepad++ 删除指定字符开头的行的正则表达式 1.删除A之后的所有字符用:A.*$ 2.删除A之前的所有字符用:^([^s]*)A ####如果是其他字符就把A替换为其他字符 注释:如何是特殊 ...
- php swoft redis 发布和订阅
//订阅 public function subscribe() { /* @var \Swoft\Redis\Redis $redis */ $redis = App::getBean(\Swoft ...
- Edge屏蔽CSDN (必应)
国内的中文论坛都一样的烂(博客园除外),CSDN和微博只是烂的方式不一样.当你想找解决方法的时候却发现搜索出来的结果是同一篇文章被n个人投了n遍,查询内容不仅不能解决问题,还浪费了大量时间.这几天偶尔 ...