P5956-[POI2017]Podzielno【数学】
正题
题目链接:https://www.luogu.com.cn/problem/P5956
题目大意
\(B\)进制下,给出序列\(a\),\(a_i\)表示数字\(i\)有多少个。求一个最大的\(X\)在\(B\)进制下,由给出的数字组成(不一定要用完),且其是\(B-1\)的倍数。
\(q\)次询问\(X\)的第\(k\)位是几。
\(2\leq B\leq 10^6,1\leq q\leq 10^5,1\leq a_i\leq 10^6,0\leq k\leq 10^{18}\)
解题思路
设\(x_i\)表示第\(i\)位的话就是
\]
拆开单独的一个来看
\]
\]
所以其实就是各位数字的和为\(B-1\)的倍数就好了。
然后再回头看题目发现有限制\(a_i\geq 1\)。这样如果用上所有数字的和对\(B-1\)取模为\(t\)的话,若\(t\)不为\(0\),我们就让\(a_t\)减去一个\(1\)就好了。
然后对于询问求一个前缀和然后二分
时间复杂度\(O(B+q\log B)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10;
ll B,q,a[N];
signed main()
{
scanf("%lld%lld",&B,&q);
ll t=0;
for(ll i=0;i<B;i++){
scanf("%lld",&a[i]);
(t+=a[i]*i)%=B-1;
}
if(t)a[t]--;
for(ll i=0;i<B;i++)a[i]+=a[i-1];
while(q--){
ll x;scanf("%lld",&x);x++;
if(x>a[B-1])puts("-1");
else printf("%lld\n",lower_bound(a,a+B,x)-a);
}
return 0;
}
P5956-[POI2017]Podzielno【数学】的更多相关文章
- 【BZOJ4724】[POI2017]Podzielno 数学+二分
[BZOJ4724][POI2017]Podzielno Description B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零, ...
- BZOJ4724 [POI2017]Podzielno
4724: [POI2017]Podzielno Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 77 Solved: 37[Submit][Stat ...
- bzoj 4724 [POI2017]Podzielno 二分+模拟
[POI2017]Podzielno Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 364 Solved: 160[Submit][Status][ ...
- BZOJ 4724: [POI2017]Podzielno
Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...
- 【bzoj4724】[POI2017]Podzielno 二分
题目描述 B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数.q次询问,每次询问X在B进制 ...
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- BZOJ 4726: [POI2017]Sabota?
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 301 Solved ...
随机推荐
- java实现全排列输出
java实现全排列输出 转自:http://easonfans.iteye.com/blog/517286 最近在找工作,面试java程序员或者软件工程师,在笔试的时候常常见到这么一道题:全排列 的输 ...
- SpringBoot 优雅配置跨域多种方式及Spring Security跨域访问配置的坑
前言 最近在做项目的时候,基于前后端分离的权限管理系统,后台使用 Spring Security 作为权限控制管理, 然后在前端接口访问时候涉及到跨域,但我怎么配置跨域也没有生效,这里有一个坑,在使用 ...
- 刷题-力扣-213. 打家劫舍 II
213. 打家劫舍 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber-ii/ 著作权归领扣网络所有.商业 ...
- Python也可以拥有延迟函数
延迟函数defer 我们知道在Golang中有一个关键字defer,用它来声明在函数调用前,会让函数*延迟**到外部函数退出时再执行,注意,这里的退出含义:函数return返回或者函数panic退出 ...
- struts2拦截action多种方法
按照教程写的,运行的时候显示There is no Action mapped for namespace [/] and action name [login!method1] associated ...
- Linux的基础——虚拟机的克隆
1.虚拟机的安装 虚拟机的安装在另一个文档 安装jdk(在另外一个文档中) 2.虚拟机的克隆 准备工作:一台装有Linux系统的主机(已经配置好jdk) 选择主机进行克隆 注意:这里一定要选择创建完整 ...
- 三大操作系统对比使用之·Ubuntu16.04
时间:2018-11-13 整理:byzqy 本篇是一篇个人对 Ubuntu 16.04(桌面版)使用方法.技巧以及应用推荐的文章,以便查询和分享! 打开终端: Ctrl+Alt+T,即可打开&quo ...
- Python - 头部解析
背景 写 python 的时候,基本都要加两个头部注释,这到底有啥用呢? #!usr/bin/env python # -*- coding:utf-8 _*- print("hello-w ...
- AntDesign VUE:上传组件自定义限制的两种方式(Boolean、Promise)
AntD上传组件 AntDesign VUE文档 第一种方式 beforeUpload(file) { let isLt = true if (filesSize) { isLt = file.siz ...
- .Net 如何修改 HttpHeaders 中的 Content-Disposition
最近在看一些.Net5的内容,于是就想将之前Spring写的一个项目迁移到.Net上来看看. 不得不说.Net这几年发展的确实挺好的,超快的启动速度,极佳的性能让它一点不比Java差,但确实在国内生态 ...