正题

题目链接:https://darkbzoj.tk/problem/4423


题目大意

给出一个\(n*n\)的网格图,然后四联通的点之间连接。每次删掉一条边求这条边的两个点是否连通。强制在线。

\(1\leq n\leq 1500,1\leq m\leq 2n(n-1)\)


解题思路

转换成对偶图之后就可以变成加边判断连通性的问题了。

一个很简单的理解就是如果新的删去的边在对偶图构成了一个环那么就会被分成环内和环外了。

时间复杂度\(O(m\alpha(m))\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1600;
int n,k,fa[N*N];
int find(int x)
{return (fa[x]==x)?(x):(fa[x]=find(fa[x]));}
void Unionm(int x,int y){
x=find(x);y=find(y);
if(x==y)return;fa[x]=y;
}
int main()
{
scanf("%d%d",&n,&k);
bool last=1;
for(int i=1;i<=(n+1)*(n+1);i++)fa[i]=i;
for(int i=1;i<=n;i++){
Unionm(i,i+1);
Unionm((i-1)*(n+1)+1,i*(n+1)+1);
Unionm(n*(n+1)+i,n*(n+1)+i+1);
Unionm((i-1)*(n+1)+n+1,i*(n+1)+n+1);
}
for(int i=1;i<=k;i++){
int x1,x2,y1,y2,x,y,p,q;
char op1[2],op2[2],op;
scanf("%d%d%s",&x1,&y1,&op1);
scanf("%d%d%s",&x2,&y2,&op2);
if(last)x=x1,y=y1,op=op1[0];
else x=x2,y=y2,op=op2[0];
if(op=='N'){
p=x*(n+1)+y+1;
q=(x-1)*(n+1)+y+1;
p=find(p);q=find(q);
if(p!=q)last=1,puts("TAK");
else last=0,puts("NIE");
}
else{
p=x*(n+1)+y+1;
q=x*(n+1)+y;
p=find(p);q=find(q);
if(p!=q)last=1,puts("TAK");
else last=0,puts("NIE");
}
Unionm(p,q);
}
return 0;
}

bzoj#4423-[AMPPZ2013]Bytehattan【并查集】的更多相关文章

  1. BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 277  Solved: 183 [Submit ...

  2. bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4423 [题意] 给定一个平面图,随时删边,并询问删边后两点是否连通.强制在线. [科普 ...

  3. BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集

    Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...

  4. BZOJ 4423: [AMPPZ2013]Bytehattan

    Sol 对偶图+并查集. 思路非常好,将网格图转化成对偶图,在原图中删掉一条边,相当于在对偶图中连上一条边(其实就是网格的格点相互连边),每次加边用并查集维护就可以了. 哦对,还要注意边界就是网格外面 ...

  5. 【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 144  Solved: 103[Submit][ ...

  6. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  7. BZOJ 3674 可持久化并查集加强版(按秩合并版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  8. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

  9. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  10. bzoj 4025 二分图 分治+并查集/LCT

    bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...

随机推荐

  1. Thread类中yield方法

    Yield方法可以暂停当前正在执行的线程对象,让其他有相同优先级的线程执行.它是一个静态方法而且只保证当前线程放弃CPU占用而不能保证其它线程一定能占用CPU,执行yield()的线程有可能在进入到暂 ...

  2. js 遍历数组对象求和

    这个通常是求多个商品的总价遇到的情形: [ 0: {id: 1, name: "服务费", price: "1.00"} 1: {id: 2, name: &q ...

  3. springboot 和spring cloud 博客分享

    spring boot 知识点总结 天狼星 https://www.cnblogs.com/wjqhuaxia/p/9820902.html spring cloud 知识点总结 姿势帝 https: ...

  4. WPF---数据模板(一)

    一.场景模拟 假设我们现在有如下需求: 我们需要在ListBox中的每个Item中显示某个成员的姓名.年龄以及喜欢的颜色,点击Item的时候,会在右边显示详细信息,同时也想让ListBox的样式变得好 ...

  5. 在localStorage中存储对象数组并读取

    频繁ajax请求导致页面响应变慢. 于是考虑将数据存储在window.storage中,这样只请求一次ajax,而不需要频繁请求. 鉴于localstorage中只能存储字符串,所以我们要借助于JSO ...

  6. JMeter结果树响应数据中文乱码

    打开apache-jmeter-2.11\bin\jmeter.properties文件,搜索"encoding"关键字,找到如下配置: # The encoding to be ...

  7. linux高级监控atop的使用

    一.centos安装 sudo yum -y install epel-release.noarch sudo yum -y install atop sudo systemctl enable at ...

  8. Promise.race()

    Promise.race([ ])---race竞赛,只要有一个决议了,就返回一个promise实例(对应resolve()或reject( )中参数值: 1.与Promise.all()对应的,还有 ...

  9. android kotlin 子线程中调用界面UI组件崩溃

    UI 只能在主线程内更新,子线程需要更新UI组件时可以这样: fun fuck(){ Executors.newSingleThreadExecutor().execute{ // url reque ...

  10. vue 用driver 添加用户引导

    npm 安装: npm install driver.js //用户引导 import Driver from 'driver.js' import 'driver.js/dist/driver.mi ...