本文将同步发布于:

题目

题目链接:洛谷CF1468M

题意简述

给定 \(n\) 个集合 \(S_{1\sim n}\),问是否存在 \(i,j\) 满足 \(i\neq j\) 且 \(\left\lvert S_i\cap S_j\right\rvert\geq 2\)。

若存在,输出 \(i,j\)(任意一对都可);否则输出 \(-1\)。

\(n\leq 10^5\),\(\sum\limits_{i=1}^n\left\lvert S_i\right\rvert\leq 2\times 10^5\)。

题解

图论转化

直接思考有点难,考虑经典套路,我们把这个问题转化成二分图模型。

对于一个集合 \(S_i\),我们将其构造为一个左部点 \(i\)。

对于一个元素 \(x\),我们将其构造为一个右部点 \(x\)。

如果 \(x\in S_i\),那么图上有一条边 \((i,x)\)。

那么 \(\left\lvert S_i\cap S_j\right\rvert\geq 2\),就对应有至少两个右部点连到了同样的两个点。

换句话说,符合条件的答案对应了图中的一个四元环。

并且,这张图的度数总和为 \(\sum\limits_{i=1}^n\left\lvert S_i\right\rvert\)。

按点的度数分治

现在我们要解决的问题就是一个二分图内是否存在四元环。

这同样是一个简单的问题,具体地,我们考虑按点的度数分治:

  • 找到一个非负整数 \(B\);
  • 称度数 \(\geq B\) 的为大点,度数 \(< B\) 的为小点;
  • 对于大点,其个数为 \(\Theta\left(\frac{\sum\texttt{deg}}{B}\right)\)。

我们对于每个大左部点,标记其所有相连点,如果存在另一个左部点,其连接的标记点个数 \(\geq 2\),那么存在一个四元环。

我们对于每个小左部点,我们枚举其对应的所有的右部点对,然后对于每一个点对,我们枚举其最小值,然后标记其对应点,如果一个点在之前被标记过,那么就存在一个四元环。

根据上面的分析,我们得出算法的时间复杂度为 \(\Theta\left(\frac{\sum\texttt{deg}}{B}\sum\texttt{deg}+B\sum\texttt{deg}\right)\)。

理论分析可以得出,最优的时间复杂度为 \(\Theta\left(\sum\texttt{deg}\sqrt{\sum\texttt{deg}}\right)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
static char buf[1<<21],*p1=buf,*p2=buf;
#define flush() (fwrite(wbuf,1,wp1,stdout),wp1=0)
#define putchar(c) (wp1==wp2&&(flush(),0),wbuf[wp1++]=c)
static char wbuf[1<<21];int wp1;const int wp2=1<<21;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) res=10*res+(ch^'0'),ch=getchar();
return res;
} inline void write(reg int x){
static char buf[32];
reg int p=-1;
if(x<0) x=-x,putchar('-');
if(!x) putchar('0');
else while(x) buf[++p]=(x%10)^'0',x/=10;
while(~p) putchar(buf[p--]);
return;
} const int MAXN=1e5+5;
const int MAXS=2e5+5; struct Event{
int x,y,id;
inline Event(reg int x=0,reg int y=0,reg int id=0):x(x),y(y),id(id){
return;
}
}; struct Link{
int val,id;
inline Link(reg int val=0,reg int id=0):val(val),id(id){
return;
}
}; int n; inline pair<int,int> solve(void){
n=read();
reg int sum=0;
vector<vector<int>> S(n+1);
vector<int> V;
for(reg int i=1;i<=n;++i){
reg int k=read();
sum+=k;
S[i].resize(k);
for(reg int j=0;j<k;++j)
S[i][j]=read(),V.push_back(S[i][j]);
}
sort(V.begin(),V.end()),V.erase(unique(V.begin(),V.end()),V.end());
for(reg int i=1;i<=n;++i)
for(int& x:S[i])
x=lower_bound(V.begin(),V.end(),x)-V.begin();
reg int m=V.size();
reg size_t B=sqrt(sum/16);
vector<int> Big,Sma;
for(int i=1;i<=n;++i)
if(S[i].size()>=B)
Big.push_back(i);
else
Sma.push_back(i);
vector<bool> vis(m);
vis.resize(m);
for(reg int i=0,siz=Big.size();i<siz;++i){
int u=Big[i];
for(int x:S[u])
vis[x]=true;
for(reg int j=1;j<=n;++j){
int v=j;
if(u!=v){
reg int cnt=0;
for(int x:S[v])
if(vis[x])
++cnt;
if(cnt>=2)
return make_pair(u,v);
}
}
for(int x:S[u])
vis[x]=false;
}
vector<Event> E;
for(reg int i=0,siz=Sma.size();i<siz;++i){
reg int u=Sma[i];
for(reg int j=0,siz=S[u].size();j<siz;++j)
for(reg int k=j+1;k<siz;++k)
E.push_back(Event(S[u][j],S[u][k],u));
}
vector<vector<Link>> G;
G.resize(m);
for(Event e:E)
if(e.x<e.y)
G[e.x].push_back(Link(e.y,e.id));
else
G[e.y].push_back(Link(e.x,e.id));
vector<int> from;
from.resize(m);
for(reg int i=0;i<m;++i){
for(Link L:G[i])
if(!from[L.val])
from[L.val]=L.id;
else
return make_pair(from[L.val],L.id);
for(Link L:G[i])
from[L.val]=0;
}
return make_pair(-1,-1);
} int main(void){
reg int t=read();
while(t--){
static pair<int,int> ans;
ans=solve();
if(ans.first==-1)
write(-1),putchar('\n');
else
write(ans.first),putchar(' '),write(ans.second),putchar('\n');
}
flush();
return 0;
}

「题解」CF1468M Similar Sets的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. Linux-鸟菜-6-文件与目录管理

    Linux-鸟菜-6-文件与目录管理 这章主要是说一些对目录和文件的增删改查等等命令. .    代表当前目录 ..    代表前一个目录   / 的 . 和 .. 一样 -    代表前一个工作目录 ...

  2. XCTF-supersqli

    supersqli 进来有个输入框,看内容应该是var_dump了sql查询结果 单引号有报错,万能语句能用,注释符#没被ban 打了个union select,给提示ban了一堆关键字,而且忽略大小 ...

  3. Linux查看进程和查看端口占用

    查看进程 ps -ef|grep ****.jar 查看端口占用(如果出现命令找不到,安装一下工具即可) netstat -lnp|grep 端口号 (命令找不到解决办法) yum install n ...

  4. mouseenter mouseleave鼠标悬浮离开事件

  5. 最全的go语言的时间格式

    该文可以快速在Go语言中获得时间的计算. 在Go中获取时间 如何获取当前时间 now := time.Now() fmt.Printf("current time is :%s", ...

  6. [web] 虚拟机网络设置

    三种模式 桥接(Bridged):主机网卡--虚拟网桥--虚拟机网卡,把主机虚拟为交换机,虚拟机ip需与主机设置在同一网段,网关与DNS与主机网卡一致 地址转换(NAT):主机网卡--虚拟NAT设备- ...

  7. Bash技巧:使用 set 内置命令帮助调试 shell 脚本

    Bash技巧:使用 set 内置命令帮助调试 shell 脚本 霜鱼片发布于 2020-02-03   在 bash 中,可以使用 set 内置命令设置和查看 shell 的属性.这些属性会影响 sh ...

  8. tail -n 13 history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}'提取第2到第11列

    # cat history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}' # tail -n 13 history 215 systemctl stop 216 ...

  9. Msf--永恒之蓝 ms17_010

    |>>>中华人民共和国网络安全法<<<|警告:请勿用于非法用途,后果自负! 简介 一.概述 永恒之蓝是指2017年4月14日晚,黑客团体Shadow Brokers ...

  10. nginx重定向rewrite

    引入rewrite vim /etc/nginx/conf.d/mobile_pc.conf server{ listen 80; server_name www.zls.com zls.com; r ...