TensorRT 基于Yolov3的开发

Models

Desc

tensorRT for Yolov3

https://github.com/lewes6369/TensorRT-Yolov3

Test Enviroments

Ubuntu  16.04

TensorRT 5.0.2.6/4.0.1.6

CUDA 9.2

下载官方模型转换的caffe模型:

百度云pwd:gbue

谷歌drive

如果运行模型是自己训练的,注释“upsample_param”块,并将最后一层的prototxt修改为:

Download the caffe model converted by official model:

Baidu Cloud here pwd: gbue

Google Drive here

If run model trained by yourself, comment the "upsample_param" blocks, and modify the prototxt the last layer as:

layer {

#the bottoms are the yolo input layers

bottom: "layer82-conv"

bottom: "layer94-conv"

bottom: "layer106-conv"

top: "yolo-det"

name: "yolo-det"

type: "Yolo"

}

如果不同的内核,还需要更改“YoloConfigs.h”中的yolo配置。

Run Sample

#build source code

git submodule update --init --recursive

mkdir build

cd build && cmake .. && make && make install

cd ..

#for yolov3-608

./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80

#for fp16

./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=fp16

#for int8 with calibration datasets

./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=int8 --calib=./calib_sample.txt

#for yolov3-416 (need to modify include/YoloConfigs for YoloKernel)

./install/runYolov3 --caffemodel=./yolov3_416.caffemodel --prototxt=./yolov3_416.prototxt --input=./test.jpg --W=416 --H=416 --class=80

Desc

tensorRT for Yolov3

Test Enviroments

Ubuntu  16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2

Performance

Eval Result

用appending附件编译上面的模型模型--evallist=labels.txt

从val2014中选择的200张图片制作的int8校准数据(见脚本目录)

提示注意:             

在yolo层和nms中,caffe的实现没有什么不同,应该与tensorRT fp32的结果相似。

Details About Wrapper

see
link TensorRTWrapper

https://github.com/lewes6369/tensorRTWrapper

TRTWrapper

Desc

a wrapper for tensorRT net (parser caffe)

Test Environments

Ubuntu  16.04
TensorRT 5.0.2.6/4.0.1.6
CUDA 9.2

About Wraper

you can use the wrapper like this:

//normal
std::vector<std::vector<float>> calibratorData;
trtNet net("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData);
//fp16
trtNet net_fp16("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:FLOAT16);
//int8
trtNet net_int8("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:INT8);
 
//run inference:
net.doInference(input_data.get(), outputData.get());
 
//can print time cost
net.printTime();
 
//can write to engine and load From engine
net.saveEngine("save_1.engine");
trtNet net2("save_1.engine");

when you need add new plugin ,just add the plugin code to pluginFactory

Run Sample

#for classification
cd sample
mkdir build
cd build && cmake .. && make && make install
cd ..
./install/runNet --caffemodel=${CAFFE_MODEL_NAME} --prototxt=${CAFFE_PROTOTXT} --input=./test.jpg

TensorRT 基于Yolov3的开发的更多相关文章

  1. TensorRT 7.2.1开发初步

    TensorRT 7.2.1开发初步 TensorRT 7.2.1开发人员指南演示了如何使用C ++和Python API来实现最常见的深度学习层.它显示了如何采用深度学习框架构建现有模型,并使用该模 ...

  2. TensorRT 7.2.1 开发概要(下)

    TensorRT 7.2.1 开发概要(下) 1.2. Where Does TensorRT Fit? 一般来说,开发和部署深度学习模型的工作流要经过三个阶段. Phase 1 is trainin ...

  3. TensorRT 7.2.1 开发概要(上)

    TensorRT 7.2.1 开发概要(上) Abstract 这个TysRR7.2.1开发者指南演示了如何使用C++和Python API来实现最常用的深层学习层.它展示了如何使用深度学习框架构建现 ...

  4. [Open Source]基于YOLOv3与Django框架的Web应用-YOLOv3_Detect_Web

    YOLOv3_Detect_Web Use Yolov3 detect on Web 使用 YOLOv3(PyTorch 和 Django 实现)的对象检测应用程序. 网页和 REST API由Dja ...

  5. 基于Laravel+Swoole开发智能家居后端

    基于Laravel+Swoole开发智能家居后端 在上一篇<Laravel如何优雅的使用Swoole>中我已经大概谈到了Laravel结合Swoole的用法. 今天,我参与的智能家居项目基 ...

  6. 优分享VR开源啦,优分享VR是基于Google VR开发的一款手机VR视频资源的聚合软件

    欢迎来到优分享VR开源项目 优分享VR 开源中国Git地址: http://git.oschina.net/xumingwang/youkes_vr 优分享VR是 优分享安卓APP VR视频播放开源部 ...

  7. SCADESuite嵌入式软件基于模型的开发

    SCADE Suite®产品是针对高安全性嵌入式软件的基于模型的开发环境 SCADE Suite是高安全性嵌入式软件的开发标准,其应用领域涵盖航空.国防.轨道交通.能源和重工业.专为最高等级的质量和安 ...

  8. 与众不同 windows phone (31) - Communication(通信)之基于 Socket UDP 开发一个多人聊天室

    原文:与众不同 windows phone (31) - Communication(通信)之基于 Socket UDP 开发一个多人聊天室 [索引页][源码下载] 与众不同 windows phon ...

  9. 与众不同 windows phone (30) - Communication(通信)之基于 Socket TCP 开发一个多人聊天室

    原文:与众不同 windows phone (30) - Communication(通信)之基于 Socket TCP 开发一个多人聊天室 [索引页][源码下载] 与众不同 windows phon ...

随机推荐

  1. Python中的时间日期模块(time、datetime)

    目录 Datetime 获取当前时间 获取当前日期 获取当前时间的tuple元组 格式化日期和时间 时间移动 获取两个时间的时间差 时间格式转换 Time 获取距元年(1970.1.1)的秒数 当时时 ...

  2. RHCE7 认证之学习笔记

    -------------------------------------------------------------------------------------------初始化:两台服务器 ...

  3. ES6新增常用方法

    字符串新增方法 padStart.padEnd 如果原字符串不够指定长度,则会在左侧(右侧)填充字符串,用以补全 padStart( length: number, fillStr?: string ...

  4. 【Docker】2. Docker的架构介绍、安装与卸载 (CentOS 7)

    一.docker的基本组成 开局一张图. docker的组成: Client:客户端,可以通过它与docker服务进行交互.比如容器的构建.拉取.运行. DOCKER_HOST:就是docker服务. ...

  5. Consul 服务的注册和发现

    Consul 是Hashicorp公司推出的开源工具,用于实现分布式系统的服务发现与配置.Consul是分布式的,高可用的,可横向扩展的. Consul 的主要特点有:    Service Disc ...

  6. 从系统的角度分析影响程序执行性能的因素——SA20225205 黄兴宇

    实验总结分析报告:从系统的角度分析影响程序执行性能的因素 1.请您根据本课程所学内容总结梳理出一个精简的Linux系统概念模型,最大程度统摄整顿本课程及相关的知识信息,模型应该是逻辑上可以运转的.自洽 ...

  7. linux跨文件复制粘贴

    跨文件是这样的: 复制a.txt的第20行至第30行到b.txt中vi a.txt:2010yy:e b.txtp

  8. sscanf的应用

    1.提取字符串 2.提取指定长度的字符串 3.提取指定字符为止的字符串 4.取仅包含指定字符集的字符串 5.取到指定字符集为止的字符串 #include <stdio.h> int mai ...

  9. 屌炸天的3D引擎OpenCASCADE的用法及案例(转载之处:)

    What CASCADE? Open CASCADE(简称OCC)平台是由法国Matra Datavision公司开发的CAD/CAE/CAM软件平台,可以说是世界上最重要的几何造型基础软件平台之一. ...

  10. 快速熟悉windows操作

    快捷键 win + E : 打开我的电脑 Ctrl+Shift+Esc:打开资源管理器 Alt +F4 :关闭当前窗口 Win + R:打开命令窗口 DOS 命令 打开CMD 的方式 Win+R:输入 ...