1. aiohttp安装

pip install aiohttp

1.1. 基本请求用法

async with aiohttp.get('https://github.com') as r:
await r.text()

其中r.text(), 可以在括号中指定解码方式,编码方式,例如

await resp.text(encoding='windows-1251')

或者也可以选择不编码,适合读取图像等,是无法编码的

await resp.read()

2.发起一个session请求

 

首先是导入aiohttp模块:

import aiohttp

然后我们试着获取一个web源码,这里以GitHub的公共Time-line页面为例:

async with aiohttp.ClientSession() as session:
async with session.get('https://api.github.com/events') as resp:
print(resp.status)
print(await resp.text())

上面的代码中,我们创建了一个 ClientSession 对象命名为session,然后通过session的get方法得到一个 ClientResponse 对象,命名为resp,get方法中传入了一个必须的参数url,就是要获得源码的http url。至此便通过协程完成了一个异步IO的get请求。

有get请求当然有post请求,并且post请求也是一个协程:

session.post('http://httpbin.org/post', data=b'data')

用法和get是一样的,区别是post需要一个额外的参数data,即是需要post的数据。

除了get和post请求外,其他http的操作方法也是一样的:

session.put('http://httpbin.org/put', data=b'data')
session.delete('http://httpbin.org/delete')
session.head('http://httpbin.org/get')
session.options('http://httpbin.org/get')
session.patch('http://httpbin.org/patch', data=b'data')

不要为每次的连接都创建一次session,一般情况下只需要创建一个session,然后使用这个session执行所有的请求。

每个session对象,内部包含了一个连接池,并且将会保持连接和连接复用(默认开启)可以加快整体的性能。

3.在URL中传递参数

 

我们经常需要通过 get 在url中传递一些参数,参数将会作为url问号后面的一部分发给服务器。在aiohttp的请求中,允许以dict的形式来表示问号后的参数。举个例子,如果你想传递 key1=value1   key2=value2 到 httpbin.org/get 你可以使用下面的代码:

params = {'key1': 'value1', 'key2': 'value2'}
async with session.get('http://httpbin.org/get',
params=params) as resp:
assert resp.url == 'http://httpbin.org/get?key2=value2&key1=value1'

可以看到,代码正确的执行了,说明参数被正确的传递了进去。不管是一个参数两个参数,还是更多的参数,都可以通过这种方式来传递。除了这种方式之外,还有另外一个,使用一个 list 来传递(这种方式可以传递一些特殊的参数,例如下面两个key是相等的也可以正确传递):

params = [('key', 'value1'), ('key', 'value2')]
async with session.get('http://httpbin.org/get',
params=params) as r:
assert r.url == 'http://httpbin.org/get?key=value2&key=value1'

除了上面两种,我们也可以直接通过传递字符串作为参数来传递,但是需要注意,通过字符串传递的特殊字符不会被编码:

async with session.get('http://httpbin.org/get',
params='key=value+1') as r:
assert r.url == 'http://httpbin.org/get?key=value+1'

4.响应的内容

还是以GitHub的公共Time-line页面为例,我们可以获得页面响应的内容:

async with session.get('https://api.github.com/events') as resp:
print(await resp.text())

运行之后,会打印出类似于如下的内容

'[{"created_at":"2019-03-12T14:06:22Z","public":true,"actor":{...

resp的text方法,会自动将服务器端返回的内容进行解码--decode,当然我们也可以自定义编码方式:

await resp.text(encoding='gb2312'

除了text方法可以返回解码后的内容外,我们也可以得到类型是字节的内容:

print(await resp.read())

运行的结果是:

b'[{"created_at":"2015-06-12T14:06:22Z","public":true,"actor":{...

gzip和deflate转换编码已经为你自动解码。

小记:

text(),read()方法是把整个响应体读入内存,如果你是获取大量的数据,请考虑使用”字节流“(streaming response)

5.特殊响应内容:json

如果我们获取的页面的响应内容是json,aiohttp内置了更好的方法来处理json:

async with session.get('https://api.github.com/events') as resp:
print(await resp.json())

如果因为某种原因而导致resp.json()解析json失败,例如返回不是json字符串等等,那么resp.json()将抛出一个错误,也可以给json()方法指定一个解码方式:

print(await resp.json(encoding='gb2312'))

或者传递一个函数进去:

print(await resp.json( lambda(x:x.replace('a','b')) ))

6.以字节流的方式读取响应内容

虽然json(),text(),read()很方便的能把响应的数据读入到内存,但是我们仍然应该谨慎的使用它们,因为它们是把整个的响应体全部读入了内存。即使你只是想下载几个字节大小的文件,但这些方法却将在内存中加载所有的数据。所以我们可以通过控制字节数来控制读入内存的响应内容:

async with session.get('https://api.github.com/events') as resp:
await resp.content.read(10) #读取前10个字节

一般地,我们应该使用以下的模式来把读取的字节流保存到文件中:

with open(filename, 'wb') as fd:
while True:
chunk = await resp.content.read(chunk_size)
if not chunk:
break
fd.write(chunk)

7.自定义请求头

如果你想添加请求头,可以像get添加参数那样以dict的形式,作为get或者post的参数进行请求:

import json
url = 'https://api.github.com/some/endpoint'
payload = {'some': 'data'}
headers = {'content-type': 'application/json'} await session.post(url,
data=json.dumps(payload),
headers=headers)

8.自定义Cookie

给服务器发送cookie,可以通过给 ClientSession 传递一个cookie参数:

url = 'http://httpbin.org/cookies'
cookies = {'cookies_are': 'working'}
async with ClientSession(cookies=cookies) as session:
async with session.get(url) as resp:
assert await resp.json() == {
"cookies": {"cookies_are": "working"}}

可直接访问链接 “httpbin.org/cookies”查看当前cookie,访问session中的cookie请见第10节。

9.post数据的几种方式

(1)模拟表单post数据

payload = {'key1': 'value1', 'key2': 'value2'}
async with session.post('http://httpbin.org/post',
data=payload) as resp:
print(await resp.text())

注意:data=dict的方式post的数据将被转码,和form提交数据是一样的作用,如果你不想被转码,可以直接以字符串的形式 data=str 提交,这样就不会被转码。

(2)post json

import json
url = 'https://api.github.com/some/endpoint'
payload = {'some': 'data'} async with session.post(url, data=json.dumps(payload)) as resp:
...

其实json.dumps(payload)返回的也是一个字符串,只不过这个字符串可以被识别为json格式

(3)post 小文件

url = 'http://httpbin.org/post'
files = {'file': open('report.xls', 'rb')} await session.post(url, data=files)

可以设置好文件名和content-type:

url = 'http://httpbin.org/post'
data = FormData()
data.add_field('file',
open('report.xls', 'rb'),
filename='report.xls',
content_type='application/vnd.ms-excel') await session.post(url, data=data)

如果将文件对象设置为数据参数,aiohttp将自动以字节流的形式发送给服务器。

(4)post 大文件

aiohttp支持多种类型的文件以流媒体的形式上传,所以我们可以在文件未读入内存的情况下发送大文件。

@aiohttp.streamer
def file_sender(writer, file_name=None):
with open(file_name, 'rb') as f:
chunk = f.read(2**16)
while chunk:
yield from writer.write(chunk)
chunk = f.read(2**16) # Then you can use `file_sender` as a data provider: async with session.post('http://httpbin.org/post',
data=file_sender(file_name='huge_file')) as resp:
print(await resp.text())

同时我们可以从一个url获取文件后,直接post给另一个url,并计算hash值:

async def feed_stream(resp, stream):
h = hashlib.sha256() while True:
chunk = await resp.content.readany()
if not chunk:
break
h.update(chunk)
stream.feed_data(chunk) return h.hexdigest() resp = session.get('http://httpbin.org/post')
stream = StreamReader()
loop.create_task(session.post('http://httpbin.org/post', data=stream)) file_hash = await feed_stream(resp, stream)

因为响应内容类型是StreamReader,所以可以把get和post连接起来,同时进行post和get:

r = await session.get('http://python.org')
await session.post('http://httpbin.org/post',
data=r.content)

(5)post预压缩数据

在通过aiohttp发送前就已经压缩的数据, 调用压缩函数的函数名(通常是deflate 或 zlib)作为content-encoding的值:

async def my_coroutine(session, headers, my_data):
data = zlib.compress(my_data)
headers = {'Content-Encoding': 'deflate'}
async with session.post('http://httpbin.org/post',
data=data,
headers=headers)
pass

10.keep-alive, 连接池,共享cookie

ClientSession 用于在多个连接之间共享cookie:

sync with aiohttp.ClientSession() as session:
await session.get(
'http://httpbin.org/cookies/set?my_cookie=my_value')
filtered = session.cookie_jar.filter_cookies('http://httpbin.org')
assert filtered['my_cookie'].value == 'my_value'
async with session.get('http://httpbin.org/cookies') as r:
json_body = await r.json()
assert json_body['cookies']['my_cookie'] == 'my_value' 

也可以为所有的连接设置共同的请求头:

async with aiohttp.ClientSession(
headers={"Authorization": "Basic bG9naW46cGFzcw=="}) as session:
async with session.get("http://httpbin.org/headers") as r:
json_body = await r.json()
assert json_body['headers']['Authorization'] == \
'Basic bG9naW46cGFzcw=='

ClientSession 还支持 keep-alive连接和连接池(connection pooling)

11.cookie安全性

默认ClientSession使用的是严格模式的 aiohttp.CookieJar. RFC 2109,明确的禁止接受url和ip地址产生的cookie,只能接受 DNS 解析IP产生的cookie。可以通过设置aiohttp.CookieJar 的 unsafe=True 来配置:

jar = aiohttp.CookieJar(unsafe=True)
session = aiohttp.ClientSession(cookie_jar=jar)

12.控制同时连接的数量(连接池)

也可以理解为同时请求的数量,为了限制同时打开的连接数量,我们可以将限制参数传递给连接器:

conn = aiohttp.TCPConnector(limit=30)#同时最大进行连接的连接数为30,默认是100,limit=0的时候是无限制

限制同时打开限制同时打开连接到同一端点的数量((host, port, is_ssl) 三的倍数),可以通过设置 limit_per_host 参数:

conn = aiohttp.TCPConnector(limit_per_host=30)#默认是0

13.自定义域名解析

我们可以指定域名服务器的 IP 对我们提供的get或post的url进行解析:

from aiohttp.resolver import AsyncResolver

resolver = AsyncResolver(nameservers=["8.8.8.8", "8.8.4.4"])
conn = aiohttp.TCPConnector(resolver=resolver)

14.设置代理

aiohttp支持使用代理来访问网页:

async with aiohttp.ClientSession() as session:
async with session.get("http://python.org",
proxy="http://some.proxy.com") as resp:
print(resp.status)

当然也支持需要授权的页面:

async with aiohttp.ClientSession() as session:
proxy_auth = aiohttp.BasicAuth('user', 'pass')
async with session.get("http://python.org",
proxy="http://some.proxy.com",
proxy_auth=proxy_auth) as resp:
print(resp.status)

或者通过这种方式来验证授权:

session.get("http://python.org",
proxy="http://user:pass@some.proxy.com")

15.响应状态码 response status code

可以通过 resp.status来检查状态码是不是200:

async with session.get('http://httpbin.org/get') as resp:
assert resp.status == 200

16.响应头

我们可以直接使用 resp.headers 来查看响应头,得到的值类型是一个dict:

>>> resp.headers
{'ACCESS-CONTROL-ALLOW-ORIGIN': '*',
'CONTENT-TYPE': 'application/json',
'DATE': 'Tue, 15 Jul 2014 16:49:51 GMT',
'SERVER': 'gunicorn/18.0',
'CONTENT-LENGTH': '331',
'CONNECTION': 'keep-alive'}

或者我们可以查看原生的响应头:

>>> resp.raw_headers
((b'SERVER', b'nginx'),
(b'DATE', b'Sat, 09 Jan 2016 20:28:40 GMT'),
(b'CONTENT-TYPE', b'text/html; charset=utf-8'),
(b'CONTENT-LENGTH', b'12150'),
(b'CONNECTION', b'keep-alive'))

17.查看cookie

url = 'http://example.com/some/cookie/setting/url'
async with session.get(url) as resp:
print(resp.cookies)

18.重定向的响应头

如果一个请求被重定向了,我们依然可以查看被重定向之前的响应头信息:

>>> resp = await session.get('http://example.com/some/redirect/')
>>> resp
<ClientResponse(http://example.com/some/other/url/) [200]>
>>> resp.history
(<ClientResponse(http://example.com/some/redirect/) [301]>,)

19.超时处理

默认的IO操作都有5分钟的响应时间 我们可以通过 timeout 进行重写:

async with session.get('https://github.com', timeout=60) as r:
...

如果 timeout=None 或者 timeout=0 将不进行超时检查,也就是不限时长。

Python调用aiohttp的更多相关文章

  1. python 调用aiohttp

    1. aiohttp安装   pip3 install aiohttp 1.1. 基本请求用法 async with aiohttp.get('https://github.com') as r: a ...

  2. 【初学python】使用python调用monkey测试

    目前公司主要开发安卓平台的APP,平时测试经常需要使用monkey测试,所以尝试了下用python调用monkey,代码如下: import os apk = {'j': 'com.***.test1 ...

  3. python调用py中rar的路径问题。

    1.python调用py,在py中的os.getcwd()获取的不是py的路径,可以通过os.path.split(os.path.realpath(__file__))[0]来获取py的路径. 2. ...

  4. python调用其他程序或脚本方法(转)

    python运行(调用)其他程序或脚本 在Python中可以方便地使用os模块运行其他的脚本或者程序,这样就可以在脚本中直接使用其他脚本,或者程序提供的功能,而不必再次编写实现该功能的代码.为了更好地 ...

  5. python调用c\c++

    前言 python 这门语言,凭借着其极高的易学易用易读性和丰富的扩展带来的学习友好性和项目友好性,近年来迅速成为了越来越多的人们的首选.然而一旦拿python与传统的编程语言(C/C++)如来比较的 ...

  6. Python调用C++

    /***gcc -o libpycall.so -shared -fPIC pycall.c*/ #include <stdio.h> #include <stdlib.h> ...

  7. 使用Python调用Flickr API抓取图片数据

    Flickr是雅虎旗下的图片分享网站,上面有全世界网友分享的大量精彩图片,被认为是专业的图片网站.其API也很友好,可以实现多种功能.这里我使用了Python调用其API获得了大量的照片数据.需要注意 ...

  8. python调用zabbix接口实现Action配置

    要写这篇博客其实我的内心是纠结的,老实说,我对zabbix的了解实在不多.但新公司的需求不容置疑,当我顶着有两个头大的脑袋懵懵转入运维领域时,面前摆着两百多组.上千台机器等着写入zabbix监控的需求 ...

  9. linux下python调用c模块

    在C调用Python模块时需要初始化Python解释器,导入模块等,但Python调用C模块却比较简单,下面还是以helloWorld.c 和 main.py 做一说明:   (1)编写C代码,hel ...

随机推荐

  1. 【Office】【Excel】将多个工作表合为一个工作表

    在工作表中按下alt+F11打开vba编辑窗口,在菜单栏中选择[插入]=>[模板],将下面的代码粘贴过去,然后运行即可 点击查看代码 Sub 合并当前工作簿下的所有工作表() On Error ...

  2. 『学了就忘』Linux服务管理 — 75、Linux系统中的服务

    目录 1.服务的介绍 2.Windows系统中的服务 3.Linux系统中服务的分类 4.独立的服务和基于xinetd服务的区别 5.如何查看一个服务是独立的服务还是基于xinetd的服务 (1)查看 ...

  3. Jenkins制品管理

    目录 一.简介 二.Jenkins管理制品 三.Nexus maven上传 jenkins上传 管理Docker镜像 管理raw 四.拷贝制品 五.版本号 Version Number 一.简介 制品 ...

  4. 文件系统系列学习笔记 - inode/dentry/file/super(2)

    此篇文章主要介绍下linux 文件系统下的主要对象及他们之间的关系. 1 inode inode结构中主要包含对文件或者目录原信息的描述,原信息包括但不限于文件大小.文件在磁盘块中的位置信息.权限位. ...

  5. Sentry 开发者贡献指南 - 后端服务(Python/Go/Rust/NodeJS)

    内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...

  6. [BUUCTF]PWN18——bjdctf_2020_babystack

    [BUUCTF]PWN18--bjdctf_2020_babystack 附件 步骤: 例行检查,64位,开启了nx保护 试运行一下程序 大概了解程序的执行过程后用64位ida打开,shift+f12 ...

  7. ubuntu web服务器配置

    1.安装Apachesudo apt-get install apache2 查看状态: service apache2 status/start/stop/restartWeb目录: /var/ww ...

  8. 【LeetCode】245. Shortest Word Distance III 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典+暴力检索 日期 题目地址:https://lee ...

  9. 【LeetCode】604. Design Compressed String Iterator 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 维护当前字符和次数 日期 题目地址:https://l ...

  10. 【LeetCode】906. Super Palindromes 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS解法 相似题目 参考资料 日期 题目地址:ht ...