大数据实战手册-开发篇之RDD:计算 transform->action
2.2 RDD:计算 transform->action
- 2.2.1 aggregate
x = sc.parallelize([2,3,4], 2)[Task不能跨分片,task数为2]
neutral_zero_value = (0,1) # sum: x+0 = x, product: 1*x = x
seqOp = (lambda aggregated, el: (aggregated[0] + el, aggregated[1] * el))
combOp = (lambda aggregated, el: (aggregated[0] + el[0], aggregated[1] * el[1]))
y = x.aggregate(neutral_zero_value,seqOp,combOp)[seqOp:各分片聚合计算
combOp:聚合各个分片
neutral_zero_value:初始化设定值,都要参与计算] # computes (cumulative sum, cumulative product)
print(x.collect())
print(y) [2, 3, 4]
(9, 24)
- 2.2.2 aggregateByKey
x = sc.parallelize([('B',1),('B',2),('A',3),('A',4),('A',5)])
zeroValue = [] # empty list is 'zero value' for append operation
mergeVal = (lambda aggregated, el: aggregated + [(el,el**2)])
mergeComb = (lambda agg1,agg2: agg1 + agg2 )
y = x.aggregateByKey(zeroValue,mergeVal,mergeComb)
print(x.collect())
print(y.collect()) [('B', 1), ('B', 2), ('A', 3), ('A', 4), ('A', 5)]
[('A', [(3, 9), (4, 16), (5, 25)]), ('B', [(1, 1), (2, 4)])]
2.2.3 cache(persistent)
2.2.4 cartesian(笛卡儿积)
# cartesian
x = sc.parallelize(['A','B'])
y = sc.parallelize(['C','D'])
z = x.cartesian(y)
print(x.collect())
print(y.collect())
print(z.collect()) ['A', 'B']
['C', 'D']
[('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D')]
- 2.2.5 checkpoint
- 2.2.6 coalesce(合并分片)
# coalesce
x = sc.parallelize([1,2,3,4,5],2)
y = x.coalesce(numPartitions=1)
print(x.glom().collect())
print(y.glom().collect()) [[1, 2], [3, 4, 5]]
[[1, 2, 3, 4, 5]]
- 2.2.7 cogroup(按rdd分组)
# cogroup
x = sc.parallelize([('C',4),('B',(3,3)),('A',2),('A',(1,1))])
y = sc.parallelize([('A',8),('B',7),('A',6),('D',(5,5))])
z = x.cogroup(y)
print(x.collect())
print(y.collect())
for key,val in list(z.collect()):
print(key, [list(i) for i in val]) [('C', 4), ('B', (3, 3)), ('A', 2), ('A', (1, 1))]
[('A', 8), ('B', 7), ('A', 6), ('D', (5, 5))]
A [[2, (1, 1)], [8, 6]]
C [[4], []]
B [[(3, 3)], [7]]
D [[], [(5, 5)]]
- 2.2.8 combineByKey
# combineByKey
x = sc.parallelize([('B',1),('B',2),('A',3),('A',4),('A',5)])
createCombiner = (lambda el: [(el,el**2)])
mergeVal = (lambda aggregated, el: aggregated + [(el,el**2)]) # append to aggregated
mergeComb = (lambda agg1,agg2: agg1 + agg2 ) # append agg1 with agg2
y = x.combineByKey(createCombiner,mergeVal,mergeComb)
print(x.collect())
print(y.collect()) [('B', 1), ('B', 2), ('A', 3), ('A', 4), ('A', 5)]
[('A', [(3, 9), (4, 16), (5, 25)]), ('B', [(1, 1), (2, 4)])]
- 2.2.9 context
- 2.2.10 countByKey
- 2.2.11 countByValue
- 2.2.12 distinct
- 2.2.13 filter
# filter
x = sc.parallelize([1,2,3])
y = x.filter(lambda x: x%2 == 1) # filters out even elements
print(x.collect())
print(y.collect()) [1, 2, 3]
[1, 3]
2.2.14 first
备注:Return the first element of this rdd
- 2.2.15 flatMap(降维)
# flatMap
x = sc.parallelize([1,2,3])
y = x.flatMap(lambda x: (x, 100*x, x**2))
print(x.collect())
print(y.collect()) [1, 2, 3]
[1, 100, 1, 2, 200, 4, 3, 300, 9]
- 2.2.16 flatMapValues
x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])])
def f(x): return x
x.flatMapValues(f).collect()
[('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')]
- 2.2.17 fold
# fold
x = sc.parallelize([1,2,3])
neutral_zero_value = 0 # 0 for sum, 1 for multiplication
y = x.fold(neutral_zero_value,lambda obj, accumulated: accumulated + obj) # computes cumulative sum
print(x.collect())
print(y) [1, 2, 3]
6
- 2.2.18 foldByKey
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> from operator import add[python标准库:常用运算函数库]
>>> sorted(rdd.foldByKey(0, add).collect())
[('a', 2), ('b', 1)]
- 2.2.19 foreach
>>> def f(x): print(x)
>>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f)[循环rdd的所有元素,无返回值]
- 2.2.20 foreachPartition [循环rdd的分片]
# foreachPartition
from __future__ import print_function
x = sc.parallelize([1,2,3],5)
def f(parition):
'''side effect: append the current RDD partition contents to a file'''
f1=open("./foreachPartitionExample.txt", 'a+')
print([el for el in parition],file=f1) # first clear the file contents
open('./foreachPartitionExample.txt', 'w').close() y = x.foreachPartition(f) # writes into foreachExample.txt print(x.glom().collect())
print(y) # foreach returns 'None'
# print the contents of foreachExample.txt
with open("./foreachPartitionExample.txt", "r") as foreachExample:
print (foreachExample.read()) [[], [1], [], [2], [3]]
None
[]
[]
[1]
[2]
[3]
2.2.21 fullOuterJoin
备注:Perform a right outer join of self and other.
2.2.22 glom()[合并rdd的分片的所有元素]
2.2.23 groupby
# groupBy
x = sc.parallelize([1,2,3])
y = x.groupBy(lambda x: 'A' if (x%2 == 1) else 'B' )
print(x.collect())
# y is nested, this iterates through it
print([(j[0],[i for i in j[1]]) for j in y.collect()]) [1, 2, 3]
[('A', [1, 3]), ('B', [2])]
- 2.2.24 groupbykey
# groupByKey
x = sc.parallelize([('B',5),('B',4),('A',3),('A',2),('A',1)])
y = x.groupByKey()
print(x.collect())
print([(j[0],[i for i in j[1]]) for j in y.collect()]) [('B', 5), ('B', 4), ('A', 3), ('A', 2), ('A', 1)]
[('A', [3, 2, 1]), ('B', [5, 4])]
- 2.2.25 groupwith(Alias for cogroup)
# groupWith
x = sc.parallelize([('C',4),('B',(3,3)),('A',2),('A',(1,1))])
y = sc.parallelize([('B',(7,7)),('A',6),('D',(5,5))])
z = sc.parallelize([('D',9),('B',(8,8))])
a = x.groupWith(y,z)
print(x.collect())
print(y.collect())
print(z.collect())
print("Result:")
for key,val in list(a.collect()):
print(key, [list(i) for i in val]) [('C', 4), ('B', (3, 3)), ('A', 2), ('A', (1, 1))]
[('B', (7, 7)), ('A', 6), ('D', (5, 5))]
[('D', 9), ('B', (8, 8))]
Result:
D [[], [(5, 5)], [9]]
C [[4], [], []]
B [[(3, 3)], [(7, 7)], [(8, 8)]]
A [[2, (1, 1)], [6], []]
- 2.2.26 histogram
rdd = sc.parallelize(range(51))
rdd.histogram(2)
([0, 25, 50], [25, 26])
rdd.histogram([0, 5, 25, 50])
([0, 5, 25, 50], [5, 20, 26])[分组区间,每区间元素个数]
rdd.histogram([0, 15, 30, 45, 60]) # evenly spaced buckets
([0, 15, 30, 45, 60], [15, 15, 15, 6])
rdd = sc.parallelize(["ab", "ac", "b", "bd", "ef"])
rdd.histogram(("a", "b", "c"))
(('a', 'b', 'c'), [2, 2])
- 2.2.27 join
# join
x = sc.parallelize([('C',4),('B',3),('A',2),('A',1)])
y = sc.parallelize([('A',8),('B',7),('A',6),('D',5)]) z = x.join(y)
print(x.collect())
print(y.collect())
print(z.collect())
[('C', 4), ('B', 3), ('A', 2), ('A', 1)]
[('A', 8), ('B', 7), ('A', 6), ('D', 5)]
[('A', (2, 8)), ('A', (2, 6)), ('A', (1, 8)), ('A', (1, 6)), ('B', (3, 7))]
- 2.2.28 leftoutjoin
# leftOuterJoin
x = sc.parallelize([('C',4),('B',3),('A',2),('A',1)])
y = sc.parallelize([('A',8),('B',7),('A',6),('D',5)])
z = x.leftOuterJoin(y)
print(x.collect())
print(y.collect())
print(z.collect()) [('C', 4), ('B', 3), ('A', 2), ('A', 1)]
[('A', 8), ('B', 7), ('A', 6), ('D', 5)]
[('A', (2, 8)), ('A', (2, 6)), ('A', (1, 8)), ('A', (1, 6)), ('C', (4, None)), ('B', (3, 7))]
- 2.2.29 rightoutjoin
# rightOuterJoin
x = sc.parallelize([('C',4),('B',3),('A',2),('A',1)])
y = sc.parallelize([('A',8),('B',7),('A',6),('D',5)])
z = x.rightOuterJoin(y)
print(x.collect())
print(y.collect())
print(z.collect()) [('C', 4), ('B', 3), ('A', 2), ('A', 1)]
[('A', 8), ('B', 7), ('A', 6), ('D', 5)]
[('A', (2, 8)), ('A', (2, 6)), ('A', (1, 8)), ('A', (1, 6)), ('B', (3, 7)), ('D', (None, 5))]
- 2.2.30 keyby
# keyBy
x = sc.parallelize([1,2,3])
y = x.keyBy(lambda x: x**2)
print(x.collect())
print(y.collect()) [1, 2, 3]
[(1, 1), (4, 2), (9, 3)]
2.2.31 lookup(key)
- 2.2.32 mapPartitions
# mapPartitions
x = sc.parallelize([1,2,3], 2)
def f(iterator): yield sum(iterator)
y = x.mapPartitions(f)
# glom() flattens elements on the same partition
print(x.glom().collect())
print(y.glom().collect()) [[1], [2, 3]]
[[1], [5]]
- 2.2.33 mapPartitionsWithIndex
# mapPartitionsWithIndex
x = sc.parallelize([1,2,3], 2)
def f(partitionIndex, iterator): yield (partitionIndex,sum(iterator))
y = x.mapPartitionsWithIndex(f) # glom() flattens elements on the same partition
print(x.glom().collect())
print(y.glom().collect()) [[1], [2, 3]]
[[(0, 1)], [(1, 5)]]
- 2.2.34 map、max、min、mean、name
- 2.2.35 mapValues
>>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])])
>>> def f(x): return len(x)
>>> x.mapValues(f).collect()
[('a', 3), ('b', 1)]
- 2.2.36 partitionby
# partitionBy
x = sc.parallelize([(0,1),(1,2),(2,3)],2)
y = x.partitionBy(numPartitions = 3, partitionFunc = lambda x: x)
# only key is passed to paritionFunc
print(x.glom().collect())
print(y.glom().collect()) [[(0, 1)], [(1, 2), (2, 3)]]
[[(0, 1)], [(1, 2)], [(2, 3)]]
- 2.2.37 persist
# rdd持久化,降低内存消耗
reqrdd.persist(storageLevel=StorageLevel.MEMORY_AND_DISK_SER)
Cache:
Persist this RDD with the default storage level (MEMORY_ONLY).
- 2.2.38 pipe
# pipe
x = sc.parallelize(['A', 'Ba', 'C', 'AD'])
y = x.pipe('grep -i "A"') # calls out to grep, may fail under Windows
print(x.collect())
print(y.collect())
['A', 'Ba', 'C', 'AD']
['A', 'Ba', 'AD']
- 2.2.40 randomSplit
- 2.2.41 reduce
# reduce
x = sc.parallelize([1,2,3])
y = x.reduce(lambda obj, accumulated: obj + accumulated) # computes a cumulative sum
print(x.collect())
print(y) [1, 2, 3]
6
- 2.2.42 reducebykey
# reduceByKey
x = sc.parallelize([('B',1),('B',2),('A',3),('A',4),('A',5)])
y = x.reduceByKey(lambda agg, obj: agg + obj)
print(x.collect())
print(y.collect()) [('B', 1), ('B', 2), ('A', 3), ('A', 4), ('A', 5)]
[('A', 12), ('B', 3)]
- 2.2.43 reduceByKeyLocally
# reduceByKeyLocally
x = sc.parallelize([('B',1),('B',2),('A',3),('A',4),('A',5)])
y = x.reduceByKeyLocally(lambda agg, obj: agg + obj)
print(x.collect())
print(y) [('B', 1), ('B', 2), ('A', 3), ('A', 4), ('A', 5)]
{'A': 12, 'B': 3}
备注:This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a “combiner” in MapReduce.
- 2.2.44 repartition
# repartition
x = sc.parallelize([1,2,3,4,5],2)
y = x.repartition(numPartitions=3)
print(x.glom().collect())
print(y.glom().collect())
[[1, 2], [3, 4, 5]]
[[], [1, 2, 3, 4], [5]]
- 2.2.45 repartitionAndSortWithinPartitions
rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)])
rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, True)
rdd2.glom().collect()
[[(0, 5), (0, 8), (2, 6)], [(1, 3), (3, 8), (3, 8)]]
- 2.2.46 smaple
# sample
x = sc.parallelize(range(7))
# call 'sample' 5 times
ylist = [x.sample(withReplacement=False, fraction=0.5) for i in range(5)]
print('x = ' + str(x.collect()))
for cnt,y in zip(range(len(ylist)), ylist):
print('sample:' + str(cnt) + ' y = ' + str(y.collect())) x = [0, 1, 2, 3, 4, 5, 6]
sample:0 y = [0, 2, 5, 6]
sample:1 y = [2, 6]
sample:2 y = [0, 4, 5, 6]
sample:3 y = [0, 2, 6]
sample:4 y = [0, 3, 4]
- 2.2.47 sampleByKey
# sampleByKey
x = sc.parallelize([('A',1),('B',2),('C',3),('B',4),('A',5)])
y = x.sampleByKey(withReplacement=False, fractions={'A':0.5, 'B':1, 'C':0.2})
print(x.collect())
print(y.collect()) [('A', 1), ('B', 2), ('C', 3), ('B', 4), ('A', 5)]
[('B', 2), ('C', 3), ('B', 4)]
- 2.2.48 sampleStdev
# sampleStdev
x = sc.parallelize([1,3,2])
y = x.sampleStdev() # divides by N-1
print(x.collect())
print(y)
[1, 3, 2]
1.0
- 2.2.49 sampleVariance
# sampleVariance
x = sc.parallelize([1,3,2])
y = x.sampleVariance() # divides by N-1
print(x.collect())
print(y)
[1, 3, 2]
1.0
- 2.2.50 sortByKey
# sortByKey
x = sc.parallelize([('B',1),('A',2),('C',3)])
y = x.sortByKey()
print(x.collect())
print(y.collect()) [('B', 1), ('A', 2), ('C', 3)]
[('A', 2), ('B', 1), ('C', 3)]
- 2.2.51 sortBy
tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
sc.parallelize(tmp).sortBy(lambda x: x[0]).collect()
[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
sc.parallelize(tmp).sortBy(lambda x: x[1]).collect()
[('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
- 2.2.52 stats、stdev、sum
- 2.2.53 subtract
x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)])
y = sc.parallelize([("a", 3), ("c", None)])
sorted(x.subtract(y).collect())
[('a', 1), ('b', 4), ('b', 5)]
2.2.54 subtractByKey
x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)])
y = sc.parallelize([("a", 3), ("c", None)])
sorted(x.subtractByKey(y).collect())
[('b', 4), ('b', 5)]
- 2.2.55 take
# take
x = sc.parallelize([1,3,1,2,3])
y = x.take(num = 3)
print(x.collect())
print(y) [1, 3, 1, 2, 3]
[1, 3, 1]
- 2.2.56 takeOrder
# takeOrdered
x = sc.parallelize([1,3,1,2,3])
y = x.takeOrdered(num = 3)
print(x.collect())
print(y) [1, 3, 1, 2, 3]
[1, 1, 2]
- 2.2.57 takeSample
# takeSample
x = sc.parallelize(range(7))
# call 'sample' 5 times
ylist = [x.takeSample(withReplacement=False, num=3) for i in range(5)]
print('x = ' + str(x.collect()))
for cnt,y in zip(range(len(ylist)), ylist):
print('sample:' + str(cnt) + ' y = ' + str(y)) # no collect on y x = [0, 1, 2, 3, 4, 5, 6]
sample:0 y = [0, 2, 6]
sample:1 y = [6, 4, 2]
sample:2 y = [2, 0, 4]
sample:3 y = [5, 4, 1]
sample:4 y = [3, 1, 4]
- 2.2.58 treeAggregate
add = lambda x, y: x + y
rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10)
rdd.treeAggregate(0, add, add)
-5
rdd.treeAggregate(0, add, add, 1)
-5
rdd.treeAggregate(0, add, add, 2)
-5
rdd.treeAggregate(0, add, add, 5)
-5
rdd.treeAggregate(0, add, add, 10)
-5
- 2.2.59 treeReduce
add = lambda x, y: x + y
rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10)
rdd.treeReduce(add)
-5
rdd.treeReduce(add, 1)
-5
rdd.treeReduce(add, 2)
-5
rdd.treeReduce(add, 5)
-5
rdd.treeReduce(add, 10)
-5
- 2.2.60 uion、unpersist、values、variance
- 2.2.61 zip
# zip
x = sc.parallelize(['B','A','A'])
# zip expects x and y to have same #partitions and #elements/partition
y = x.map(lambda x: ord(x))
z = x.zip(y)
print(x.collect())
print(y.collect())
print(z.collect()) ['B', 'A', 'A']
[66, 65, 65]
[('B', 66), ('A', 65), ('A', 65)]
- 2.2.62 zipWithIndex
# zipWithIndex
x = sc.parallelize(['B','A','A'],2)
y = x.zipWithIndex()
print(x.glom().collect())
print(y.collect()) [['B'], ['A', 'A']]
[('B', 0), ('A', 1), ('A', 2)]
- 2.2.63 zipWithUniqueId
# zipWithUniqueId
x = sc.parallelize(['B','A','A'],2)
y = x.zipWithUniqueId()
print(x.glom().collect())
print(y.collect()) [['B'], ['A', 'A']]
[('B', 0), ('A', 1), ('A', 3)]
大数据实战手册-开发篇之RDD:计算 transform->action的更多相关文章
- 《OD大数据实战》驴妈妈旅游网大型离线数据电商分析平台
一.环境搭建 1. <OD大数据实战>Hadoop伪分布式环境搭建 2. <OD大数据实战>Hive环境搭建 3. <OD大数据实战>Sqoop入门实例 4. &l ...
- SparkSQL大数据实战:揭开Join的神秘面纱
本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介 ...
- Java,面试题,简历,Linux,大数据,常用开发工具类,API文档,电子书,各种思维导图资源,百度网盘资源,BBS论坛系统 ERP管理系统 OA办公自动化管理系统 车辆管理系统 各种后台管理系统
Java,面试题,简历,Linux,大数据,常用开发工具类,API文档,电子书,各种思维导图资源,百度网盘资源BBS论坛系统 ERP管理系统 OA办公自动化管理系统 车辆管理系统 家庭理财系统 各种后 ...
- 《OD大数据实战》HDFS入门实例
一.环境搭建 1. 下载安装配置 <OD大数据实战>Hadoop伪分布式环境搭建 2. Hadoop配置信息 1)${HADOOP_HOME}/libexec:存储hadoop的默认环境 ...
- 《OD大数据实战》Hive环境搭建
一.搭建hadoop环境 <OD大数据实战>hadoop伪分布式环境搭建 二.Hive环境搭建 1. 准备安装文件 下载地址: http://archive.cloudera.com/cd ...
- 大数据学习笔记——Java篇之基础知识
Java / 计算机基础知识整理 在进行知识梳理同时也是个人的第一篇技术博客之前,首先祝贺一下,经历了一年左右的学习,从完完全全的计算机小白,现在终于可以做一些产出了!可以说也是颇为感慨,个人认为,学 ...
- Azure HDInsight 和 Spark 大数据实战(一)
What is HDInsight? Microsoft Azure HDInsight 是基于 Hortonoworks Data Platform (HDP) 的 Hadoop 集群,包括Stor ...
- 【原创干货】大数据Hadoop/Spark开发环境搭建
已经自学了好几个月的大数据了,第一个月里自己通过看书.看视频.网上查资料也把hadoop(1.x.2.x).spark单机.伪分布式.集群都部署了一遍,但经历短暂的兴奋后,还是觉得不得门而入. 只有深 ...
- 大数据实战-Spark实战技巧
1.连接mysql --driver-class-path mysql-connector-java-5.1.21.jar 在数据库中,SET GLOBAL binlog_format=mixed; ...
- 大数据学习day21-----spark04------1. 广播变量 2. RDD中的cache 3.RDD的checkpoint方法 4. 计算学科最受欢迎老师TopN
1. 广播变量 1.1 补充知识(来源:https://blog.csdn.net/huashetianzu/article/details/7821674) 之所以存在reduce side jo ...
随机推荐
- 项目讲解之火爆全网的开源后台管理系统RuoYi
博主是在2018年中就接触了 RuoYi 项目 这个项目,对于当时国内的开源后台管理系统来说,RuoYi 算是一个完成度较高,易读易懂.界面简洁美观的前后端不分离项目. 对于当时刚入行还在写 jsp ...
- 写一个 Hello SpringBoot2 项目
需求:向浏览发送/hello请求,并响应 Hello,Spring Boot 2 解决: 项目目录:controller层.Main启动项.pom.xml controller层:写好逻辑跳转,当浏览 ...
- 重新理解RocketMQ Commit Log存储协议
本文作者:李伟,社区里大家叫小伟,Apache RocketMQ Committer,RocketMQ Python客户端项目Owner ,Apache Doris Contributor,腾讯云Ro ...
- PopupWindow点击空白区域消失
下面三个条件必须要有,要在popupWindow显示之前调用popupWindow.setOutsideTouchable(true);popupWindow.setFocusable(true);p ...
- .NET 8新预览版本使用 Blazor 组件进行服务器端呈现
简介 此预览版添加了对使用 Blazor 组件进行服务器端呈现的初始支持.这是 Blazor 统一工作的开始,旨在使 Blazor 组件能够满足客户端和服务器端的所有 Web UI 需求.这是该功能的 ...
- ansible-kubeadm在线安装k8s v1.19-v1.20版本
ansible-kubeadm在线安装k8s v1.19-v1.20版本 1. ansible-kubeadm在线安装k8s v1.19-v1.20版本 安装要求 确保所有节点系统时间一致 操作系统要 ...
- Linux云计算运维工程师day29软件安装
1. diff(文本比较) [root@guosaike ~]# cp /etc/passwd{,.ori}备份 [root@guosaike ~]# diff /etc/passwd{,.ori} ...
- AI降临,前端启用面壁计划
作者:京东零售 郑炳懿 开篇: "在我们有生之年,你觉得会看到AI兵临城下的那一天吗?就像电影黑客帝国里面演的一样",Barry从红色的烟盒里取出一根烟发问道. "不可能 ...
- 高性能、快响应!火山引擎 ByteHouse 物化视图功能及入门介绍
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 物化视图是指将视图的计算结果存储在数据库中的一种技术.当用户执行查询时,数据库会直接从已经预计算好的结果中获取数据 ...
- Git&GitHub简介与入手(二)
四.GitHub 1.建账号,仓库 https://github.com/ 用邮箱在官网注册: 增加远程库的地址取别名为origin,push为推送,fetch为取回: 2.推送操作 将本地当前所在 ...