无限分解流----Fork/Join框架
Fork译为拆分,Join译为合并
Fork/Join框架的思路是把一个非常巨大的任务,拆分成若然的小任务,再由小任务继续拆解。直至达到一个相对合理的任务粒度。然后执行获得结果,然后将这些小任务的结果汇总,生成大任务的结果,
直至汇总成最初巨大任务的结果。如下图:
红色箭头代表拆分子任务。
绿色箭头代表返回子任务结果
这个框架的思路听起来,其实用传统的线程池、多线程完全就可以解决。但是内部却有很多小的细节(后边会说到),再加上清晰的使用思路,让这个框架还是在多线程并发中,占有了一席之地。
Fork/Join框架下,我们常用到三个类:(防盗连接:本文首发自http://www.cnblogs.com/jilodream/ )
RecursiveAction,子任务类,支持子任务有返回结果任务
RecursiveTask,子任务类,用于有返回结果的任务
ForkJoinPool,执行子任务的线程池。
话不多说,我们直接看代码:
1 public class SumDemo extends RecursiveTask<Long> {
2
3 int maxLen = 800_0000;
4
5 int[] arr;
6 int start;
7 int end;
8
9
10 public SumDemo(int[] arr, int start, int end) {
11 this.arr = arr;
12 this.start = start;
13 this.end = end;
14 }
15
16 @Override
17 protected Long compute() {
18 if (end - start < maxLen) {
19 long a = sum();
20 try {
21 //Thread.sleep(1);
22 } catch (Exception e) {
23 }
24 return a;
25 }
26 int middle = (start + end) / 2;
27 SumDemo left = new SumDemo(arr, start, middle);
28 SumDemo right = new SumDemo(arr, middle + 1, end);
29 left.fork();
30 right.fork();
31 //invokeAll(left,right);
32 long leftRtn = left.join();
33 long rightRtn = right.join();
34 return leftRtn + rightRtn;
35 }
36
37 private Long sum() {
38 System.out.println("now" + Thread.currentThread().getName() + "-start:" + start + "-end:" + end);
39 long sum = 0;
40 for (int i = start; i <= end; i++) {
41 sum += arr[i];
42 }
43 return sum;
44 }
45
46 public static void main(String[] args) throws ExecutionException, InterruptedException {
47 int size = 30000_0000;
48 int[] arr = new int[size];
49 Random random = new Random(0);
50 for (int i = 0; i < size; i++) {
51 arr[i] = random.nextInt(10_0000_0000);
52 }
53 long cal = 0;
54 long start = System.currentTimeMillis();
55 for (int i = 0; i < size; i++) {
56 if (i % 800_0000 == 0) {
57 Thread.sleep(1);
58 }
59 cal += arr[i];
60 }
61 long finish = System.currentTimeMillis();
62 long timeCost = finish - start;
63 System.out.println("cal" + cal);
64 long start1 = System.currentTimeMillis();
65 ForkJoinPool forkJoinPool = new ForkJoinPool();
66 ForkJoinTask<Long> result = forkJoinPool.submit(new
67 SumDemo(arr, 0, size - 1));
68 long rtn = result.get();
69 long finish1 = System.currentTimeMillis();
70 long forkJoinCost = finish1 - start1;
71 System.out.println("one thread cost" + (timeCost));
72 System.out.println("fork join cost" + forkJoinCost);
73 }
74 }
执行的结果大概是这样的
1 cal150000314007254036
2 nowForkJoinPool-1-worker-1-start:0-end:4687499
3 nowForkJoinPool-1-worker-3-start:187500000-end:192187499
4 nowForkJoinPool-1-worker-5-start:37500000-end:42187499
5 nowForkJoinPool-1-worker-6-start:225000000-end:229687499
6 .....
7 nowForkJoinPool-1-worker-3-start:220312500-end:224999999
8 nowForkJoinPool-1-worker-7-start:267187500-end:271874999
9 nowForkJoinPool-1-worker-2-start:107812500-end:112499999
10 nowForkJoinPool-1-worker-4-start:281250000-end:285937499
11 nowForkJoinPool-1-worker-7-start:271875000-end:276562499
12 nowForkJoinPool-1-worker-5-start:135937500-end:140624999
13 nowForkJoinPool-1-worker-11-start:140625000-end:145312499
14 nowForkJoinPool-1-worker-6-start:276562500-end:281249999
15 nowForkJoinPool-1-worker-4-start:285937500-end:290624999
16 nowForkJoinPool-1-worker-11-start:145312500-end:149999999
17 nowForkJoinPool-1-worker-7-start:290625000-end:295312499
18 nowForkJoinPool-1-worker-4-start:295312500-end:299999999
19 one thread cost136
20 fork join cost67
线程池默认大小是根据cpu当前的可用核数来作为大小的,我们这里是12核,但是12核居然只比单一线程用时少50%,这是挺奇怪的,这主要是由于我们Demo中的任务是连续的计算密集型任务,这种情况下单一线程的表现也很优秀,forkJoin反而由于要不断协调线程
任务而导致会损耗性能,所以差距并不明显。倘若放开注释中的睡眠时间,则两者的差距会拉开的非常大,如下:
1 one thread cost675
2 fork join cost194
代码的思路大概是这样的:
我们先定义一个子任务类,子任务类设置一个阈值,子任务开始任务时会判断:
如果计算量未超过阈值呢,说明任务足够小,我们当前子任务直接就执行计算了。
如果计算量超过阈值,说明任务比较大我们需要进行拆分,此时创建好拆分子任务,并使用fork()方法即可。拆分后的子任务,则后续使用join等待结果即可。
这样通过Fork/Join框架实现大任务的计算就算是搞定了。(防盗连接:本文首发自http://www.cnblogs.com/jilodream/ )
那既然是线程池,是如何协调线程来计算子任务的呢?
(1)与传统线程池共享一个任务队列不同的是,Fork/Join框架中,每个子任务都有一个属于自己线程的任务队列(但是两者其实并不是一对一的关系,源码很复杂),如下图:
这样肯定会由于任务规模、计算难度的不同,导致有些线程很快执行完了,其它线程还有很长的任务队列,那怎么办呢?
Fork/Join框架会让任务已经完成的线程,从其它任务的队列的尾端去取任务,这样一方面加速了任务的完成,一方面又减少了线程由于并发操作队列可能存在的并发问题。
这种方式,我们也将它称为“工作窃取”如下图:
(2)Fork出来的子任务被谁执行了:
通过阅读源码我们可以发现,如果当前线程是线程池线程,则直接把fork出的子任务丢到当前线程的队列中,否则会通过计算随机的提交到其他的线程所拥有的的队列中。由其他线程来完成。
1 public final ForkJoinTask<V> fork() {
2 Thread t;
3 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
4 ((ForkJoinWorkerThread)t).workQueue.push(this);
5 else
6 ForkJoinPool.common.externalPush(this);
7 return this;
8 }
无限分解流----Fork/Join框架的更多相关文章
- 三、并行流与串行流 Fork/Join框架
一.并行流概念: 并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流. java8中将并行进行了优化,我们可以很容易的对数据进行并行操作.Stream API可以声明性的通过pa ...
- Fork/Join框架与Java8 Stream API 之并行流的速度比较
Fork/Join 框架有特定的ExecutorService和线程池构成.ExecutorService可以运行任务,并且这个任务会被分解成较小的任务,它们从线程池中被fork(被不同的线程执行)出 ...
- 013-多线程-基础-Fork/Join框架、parallelStream讲解
一.概述 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 它同ThreadPoolExecut ...
- Java开发笔记(一百零六)Fork+Join框架实现分而治之
前面依次介绍了普通线程池和定时器线程池的用法,这两种线程池有个共同点,就是线程池的内部线程之间并无什么关联,然而某些情况下的各线程间存在着前因后果关系.譬如人口普查工作,大家都知道我国总人口为14亿左 ...
- JDK7新特性之fork/join框架
The fork/join framework is an implementation of the ExecutorService interface that helps you take ad ...
- Java并发——Fork/Join框架
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...
- Java 7 Fork/Join 框架
在 Java7引入的诸多新特性中,Fork/Join 框架无疑是重要的一项.JSR166旨在标准化一个实质上可扩展的框架,以将并行计算的通用工具类组织成一个类似java.util中Collection ...
- 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验
JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...
- 多线程(五) Fork/Join框架介绍及实例讲解
什么是Fork/Join框架 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 我们再通过For ...
- Java8新特性 并行流与串行流 Fork Join
并行流就是把一个内容分成多个数据块,并用不同的线程分 别处理每个数据块的流. Java 8 中将并行进行了优化,我们可以很容易的对数据进行并 行操作. Stream API 可以声明性地通过 para ...
随机推荐
- 来自jackson的灵魂一击:@ControllerAdvice就能保证万无一失吗?
前几天写了篇关于fastjson的文章,<fastjson很好,但不适合我>.里面探讨到关于对象循环引用的序列化问题.作为spring序列化的最大竞品,在讨论fastjson的时候肯定要对 ...
- Django笔记十五之in查询及date日期相关过滤操作
这一篇介绍关于范围,日期的筛选 in range date year week weekday quarter hour 1.in in 对应于 MySQL 中的 in 操作,可以接受数组.元组等类型 ...
- go微服务框架kratos学习笔记二(kratos demo 结构)
目录 api cmd configs dao di model server service 上篇文章go微服务框架kratos学习笔记一(kratos demo)跑了kratos demo 本章来看 ...
- Python中实现单例的几种方式
Python如何实现单例? 什么是单例模式? 单例模式:一个类只能有一个实例化对象存在的模式. 如何实现单例? 1.使用模块 python中模块是天然的单例模式,当一个模块被调用时,会生成对应的.py ...
- [Nginx/Linux]Nginx从1.15.12平滑升级到1.17.5
1 问题背景 nginx 安全漏洞(CVE-2019-9511) nginx 安全漏洞(CVE-2019-9513) nginx 安全漏洞(CVE-2019-9516) http://www.cnnv ...
- Express实现定时发送邮件
在开发中我们有时候需要每隔 一段时间发送一次电子邮件,或者在某个特定的时间进行发送邮件, 无需手动去操作,基于这样的情况下我们需要用到了定时任务,一般可以写个定时器,来完成相应的需求,在 node.j ...
- Numpy浅拷贝与深拷贝
Numpy中的浅拷贝与深拷贝 浅拷贝 共享内存地址的两个变量,当其中一个变量的值改变时另外一个也随之改变. Example a = np.array([1, 2, 3, 4, 5]) b = a pr ...
- 从0到1手把手教你ASP.NET Core Web API项目配置接口文档Swagger(二)
传送门:从0到1手把手教你ASP.NET Core Web API项目配置接口文档Swagger(一) 一.设置Swagger页面为首页--开发环境 我们虽然可以在输入 /swagger 后顺利的访问 ...
- pygame:简易游戏(飞机大战)
import math import random import pygame import sys # pygame初始化 pygame.init() # 得分初始化 score = 0 # 创建s ...
- RTSP Server(LIVE555)源码分析(四)-SETUP信令
主要分析RTSPServer::RTSPClientSession针对客户端SETUP事件处理 一. SETUP信令,handleCmd_SETUP源码解析 1)步骤1.03,parseTranspo ...