蒸馏网络中的bias是指什么? —— 论文《Distilling the Knowledge in a Neural Network》—— 知识蒸馏
论文地址:
https://arxiv.org/pdf/1503.02531.pdf
在蒸馏网络中会遇到手动调整bias的说法,但是这个bias在论文中又没有明细说明是怎么个bias,具体论文出处:
If this bias is increased by 3.5
查询Gemini,得到回答:
Assuming you're referring to the previous sentence about logits, here's the translation with "If this bias is increased by 3.5":
如果将此偏差增加 3.5,则非常负的 logits 可能仍然包含来自复杂模型所学习知识的有用信息,但这些信息可能更难解读或利用。
Here's a breakdown of the addition:
如果将此偏差增加 3.5 (If this bias is increased by 3.5): This translates directly, indicating we're considering the scenario where the bias towards negative logits is amplified.
Explanation of the impact:
By increasing the bias towards negative logits, the model will become even more confident in assigning very low probabilities to certain categories.
While the logits might still hold some information about the model's learnings, it might be harder to interpret or leverage that information due to the stronger bias.
This could potentially make the model less accurate or adaptable.
给出蒸馏网络中核心公式,温度控制的logits:
个体神经网络(CNN模型):
CNN层 + 全连接层(输出的是logits) + softmax层(输出的是预测值概率P) + 交叉熵损失函数
在蒸馏网络中,Student网络是通过学习Teacher网络中的通过温度控制后的logits所形成的概率,也就是上面公式中的这个\(q_i\),上面的这个\(q_i\)是Teacher网络的,我们也需要构建Student网络得到一个对应的\(z_i^{'}\)并根据此得到对应的\({q}_i^{'}\),在得到Teacher网络的\(q_i\)和Student网络的\({q}_i^{'}\)后根据\(KL({q}_i, {q}_i^{'})\)来训练Student网络。
可以知道,在训练Teacher网络时是不使用温度系数Temperature的,在训练好Teacher网络后千亿训练Student网络时才分别在这两个网络的logits上加入Temperature系数,在训练好Student网络后使用Student网络进行测试的时候在移除掉这个Temperature系数;但是对于某些情况,如训练Student网络是缺少某一类class数据的训练时,就会导致训练好的Student网络对这一类数据的表现performance不好,这时候就可以通过手动为没有Temperature系数的logits加入一个bias来对此进行修正,具体形式为\(z_{i}=(z_{i}+bias_{i})\),注意,这里的i指的是class缺失的那个类。
注意,这里的手动给logits加bias并不是普遍操作,而是论文中单独讨论的一种情况,即在使用Teacher网络训练Student网络时缺少某一类数据的情况,这里这是纯学术research讨论之用;这里的讨论只是要说明使用Teacher网络训练Student网络时会具有Teacher网络本身训练时的所有类的信息,即使在使用Teacher网络训练Student网络时缺少这一类信息,其实Student网络也是可以学习到这个类的相关信息的,只不过这时需要手动调整Student网络测试时的logits的bias而已。
蒸馏网络中的bias是指什么? —— 论文《Distilling the Knowledge in a Neural Network》—— 知识蒸馏的更多相关文章
- 【DKNN】Distilling the Knowledge in a Neural Network 第一次提出神经网络的知识蒸馏概念
原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"DKNN",即可获得课件电子资源. 文章已经表明,对于将知识从整体模型或高度正则化的大型模型转换为较小的蒸馏模型,蒸馏非常 ...
- 【论文考古】知识蒸馏 Distilling the Knowledge in a Neural Network
论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2 ...
- Deeplearning知识蒸馏
Deeplearning知识蒸馏 merge paddleslim.dist.merge(teacher_program, student_program, data_name_map, place, ...
- Windows Azure 虚拟网络中虚拟机的网络隔离选项
最近我们发布了一份<Windows网络安全白皮书>(单击此处下载),文中深入说明了客户可以如何利用该平台的本地功能,为他们的信息资产提供最好的保护. 由首席顾问Walter Myer ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 『TensorFlow』生成式网络中的图片预处理
简介 这里的生成式网络是广义的生成式,不仅仅指gan网络,还有风格迁移中的类自编码器网络,以及语义分割中的类自编码器网络,因为遇到次数比较多,所以简单的记录一下. 背景 1.像素和数字 图像处理目标一 ...
- 论文笔记:蒸馏网络(Distilling the Knowledge in Neural Network)
Distilling the Knowledge in Neural Network Geoffrey Hinton, Oriol Vinyals, Jeff Dean preprint arXiv: ...
- 网络中常见的ping命令协议
ICMP是"Internet Control Message Ptotocol"(Internet控制消息协议)的缩写.它是TCP/IP协议族的一个子协议,用于在IP主机.路由器之 ...
- Kubernetes用户指南(二)--部署组合型的应用、连接应用到网络中
一.部署组合型的应用 1.使用配置文件启动replicas集合 k8s通过Replication Controller来创建和管理各个不同的重复容器集合(实际上是重复的pods). Replicati ...
- p2p网络中的NAT穿透技术----常见NAT穿越解决方案
转:http://blog.csdn.net/cllzw/article/details/46438257 常见NA丁穿越解决方案 NAT技术在缓解IPv4地址紧缺问题.构建防火墙.保证网络安全等方面 ...
随机推荐
- kettle从入门到精通 第四十一课 kettle 事务(单个转换文件)
1.大家都知道,我们在平常写java或者C#等代码时,如果涉及操作多个表时为了保持数据一致性需要开启事务,同样kettle也支持事务,今天我们一起来学习下kettle 单个转换文件内的事务特性. 转换 ...
- kettle从入门到精通 第三十二课 mysql 数据连接集群/分区配置
1.这里的集群实际上是数据分区或者分片的概念,如中国全国的学生,应该不会都存在一张表里面,有可能每个省市一个表进行存储. 2.集群(分区),如下图所示 设置在"集群"标签,勾选&q ...
- ABC351
我多久没更新这个系列了啊 E 把格子分成两类,每一类之间的坐标均可互相走到. 然后将这里面的点都旋转 \(45\) 度,于是这个问题就被转换成曼哈顿距离的问题了. 我们可以把 \(x\) 和 \(y\ ...
- 解密Prompt系列31. LLM Agent之从经验中不断学习的智能体
Agent智能体的工作流可以简单分成两种:一种是固定的静态工作流,一种是智能体自主决策的动态工作流. 静态流程的Agent举几个例子,例如新闻热点追踪推送Agent,每日新论文摘要总结Agent,它们 ...
- H5弹窗底层滑动
H5弹窗底层滑动 背景 产品提出H5 弹出窗滑动时,底层页面也会跟随滑动,需要调整禁止底层滑动,增加用户体验. 问题产生原因 ios 滑动时有回弹效果 顶层元素滑动默认行为 解决办法 阻止元素的默认( ...
- 判断日期是否为周六周日,BigDecimal比较大小
判断日期是否为周六周日,BigDecimal比较大小 package com.example.core.mydemo.date; import java.math.BigDecimal; import ...
- 【iOS】Class对构造简洁代码很有帮助
(这到底取的是什么标题啊) 首先先看这段代码(有删减) @property (nonatomic, copy)NSMutableArray <NSMutableArray *>*datas ...
- FEDORA34 安装CUDA11.3
FEDORA34 安装CUDA11.3 首先确保能装上最新的显卡驱动. FEDORA显卡驱动安装 然后去官网下fedora对应的.run安装文件.运行安装, 但不要选装驱动. 完成后加环境变量: # ...
- Linux系统的硬件信息
查看Linux系统的硬件信息 [1]查看内核信息 uname 用于显示系统的内核信息 option -s:显示内核名称 -r:显示内核版本 [root@bogon /]# uname -a Linux ...
- Redis 注册成windows 服务并开机自启动
进入安装目录 输入命令redis-server --service-install redis.windows.conf 输入启动命令即可 redis-server --service-start ...