NC24734 [USACO 2010 Mar G]Great Cow Gathering
题目
题目描述
Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.
Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns \(A_i\) and \(B_i\) (1 <= \(A_i\) <= N; 1 <= \(B_i\) <= N) and has length \(L_i\) (1 <= \(L_i\) <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has \(C_i\) (0 <= \(C_i\) <= 1,000) cows living in it.
When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is \(C_i*20\)). Help Bessie choose the most convenient location for the Great Cow Gathering.
Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@--1--@--3--@--3--@[2]
[1] |
2
|
@[1]
2
Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location: Gather ----- Inconvenience ------
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 -- no travel time there!
Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3
Barn 3 0 -- no cows there!
Barn 4 0 -- no cows there!
Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14
So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the
Gathering at barns 3, 4, or 5.
输入描述
- Line 1: A single integer: N
- Lines 2..N+1: Line i+1 contains a single integer: \(C_i\)
- Lines N+2..2*N: Line i+N+1 contains three integers: \(A_i\), \(B_i\), and \(L_i\)
输出描述
- Line 1: The minimum inconvenience possible
示例1
输入
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出
15
题解
知识点:树形dp。
题目给了一个树,树边有边权表示距离,节点有点权表示牛的数量,现在要选一个树上点,使得所有牛到这个点的距离最小。因此,这是一个二次扫描+换根dp的问题,因为是解决每个点对于整棵树的问题。
第一遍dp,先以 \(1\) 为根,得出节点 \(1\) 的答案(当然可选其他点作为根)。设 \(dp[u]\) 为从 \(u\) 开始到以 \(u\) 为根的子树中各个节点牛的总距离。转移方程为:
\]
第二遍dp,从 \(1\) 出发,处理所有节点的答案。设 \(dp'[u]\) 为从 \(u\) 到牛的总距离,则有转移方程:
\]
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100007];
vector<pair<int, int>> g[100007];
ll sz[100007], dp[100007];
void dfs1(int u, int fa) {
sz[u] = a[u];
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs1(v, u);
sz[u] += sz[v];
dp[u] += dp[v] + sz[v] * w;
}
}
void dfs2(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dp[v] = dp[u] + (sz[1] - 2 * sz[v]) * w;
dfs2(v, u);
}
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
dfs1(1, 0);
dfs2(1, 0);
//for (int i = 1;i <= n;i++) cout << dp[i] << ' ';
ll ans = ~(1LL << 63);
for (int i = 1;i <= n;i++) ans = min(ans, dp[i]);
cout << ans << '\n';
return 0;
}
NC24734 [USACO 2010 Mar G]Great Cow Gathering的更多相关文章
- BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP
题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...
- BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心
题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...
- BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树
题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...
- BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化
题目描述 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N.就像任何一个好游戏一样,这样的跳格 ...
- NC24840 [USACO 2009 Mar S]Look Up
NC24840 [USACO 2009 Mar S]Look Up 题目 题目描述 Farmer John's N (1 <= N <= 100,000) cows, convenient ...
- NC25025 [USACO 2007 Nov G]Sunscreen
NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...
- NC24325 [USACO 2012 Mar S]Flowerpot
NC24325 [USACO 2012 Mar S]Flowerpot 题目 题目描述 Farmer John has been having trouble making his plants gr ...
- NC24724 [USACO 2010 Feb S]Chocolate Eating
NC24724 [USACO 2010 Feb S]Chocolate Eating 题目 题目描述 Bessie has received \(N (1 <= N <= 50,000)\ ...
- [USACO 2009 Mar S]Look Up_via牛客网
题目 链接:https://ac.nowcoder.com/acm/contest/28537/N 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...
- BZOJ3476 : [Usaco2014 Mar]The Lazy Cow
旋转坐标系后转化为正方形,$x'=x+y$,$y'=x-y+1000001$,$k'=2k-1$ 两根扫描线从左往右扫 f[i]表示y坐标下边界为i时的价值和 每次加入/删除一个点等价于一段区间加减 ...
随机推荐
- Nacos源码 (4) 配置中心
本文阅读nacos-2.0.2的config源码,编写示例,分析推送配置.监听配置的原理. 客户端 创建NacosConfigService对象 Properties properties = new ...
- 例2.8 已知带头结点单链表L,设计算法实现:以表中第一元素作为标准,将表中所有值小于第一个元素的结点均放在第一结点之前,所有值大于第一元素的结点均放在第一元素结点之后。
1.题目 例2.8已知带头结点单链表L,设计算法实现:以表中第一元素作为标准,将表中所有值小于第一个元素的结点均放在第一结点之前,所有值大于第一元素的结点均放在第一元素结点之后. 2.算法分析 3.代 ...
- 【Freertos】任务切换分析
任务切换实现 xPortPendSVHandler: mrs r0, psp // 获取进入异常时的进程栈 isb ldr r3, =pxCurrentTCB // 加载线程控制块地址到r3 ldr ...
- 利用工具查看JMS微服务在线情况,可直接调用远程方法,也可自动生成微服务客户端代码
链接:https://cccscls-my.sharepoint.com/personal/jack_mutc_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal% ...
- linux-介绍
- MongoDB的安装使用与监控
MongoDB的安装使用与监控 下载 https://www.mongodb.com/try/download/community 我这边习惯于下载 Windows 的 MSI 进行安装 Linux ...
- [转帖]002、体系结构之TiDB Server
TiDB Server 1.TiDB总览 1.1.TiDB Server架构 1.2.TiDB Server 主要功能: 2.SQL语句处理 语句的解析和编译 SQL层 协议层 上下文 解析层 逻辑优 ...
- [转帖]CentOS 8已经停止维护,怎么检查CentOS的版本
https://rumenz.com/rumenbiji/centos-check-version.html CentOS 8 在2021年12月31日停止更新并停止维护(EOL). CentOS 7 ...
- [转帖]使用 goofys 挂载 S3 bucket 为文件系统
https://xie.infoq.cn/article/7f178e0a1315f758d77c6c2bb 背景 公司的 gitlab 目前都是直接存储在物理盘上,为了确保数据不会丢失,需要重复多次 ...
- 申威CPU的简单知识梳理
摘要 最近有客户要用申威服务器了 自己很早之前简单测试过相关的CPU的服务器 但是感觉很多东西都不是很系统. 今天简单收集一下资料 希望对以后的工作有所帮助 申威CPU的创始 申威是解放军总参谋部第五 ...