简介:本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB级的数据规模,简单的架构,被国内外公司广泛采用。本系列技术文章,将详细展开介绍 ClickHouse。

前言

本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB 级的数据规模,简单的架构,被国内外公司广泛采用。

阿里云 EMR-OLAP 团队,基于开源 ClickHouse 进行了系列优化,提供了开源 OLAP 分析引擎 ClickHouse 的云上托管服务。EMR ClickHouse 完全兼容开源版本的产品特性,同时提供集群快速部署、集群管理、扩容、缩容和监控告警等云上产品功能,并且在开源的基础上优化了 ClickHouse 的读写性能,提升了 ClickHouse 与 EMR 其他组件快速集成的能力。访问 ClickHouse - E-MapReduce - 阿里云 了解详情。

译者:何源(荆杭),阿里云计算平台事业部高级产品专家

ClickHouse 聚合函数和聚合状态

ClickHouse 可能有一个独特的功能——聚合状态(除了聚合函数外)。你可以参考  和  组合子的文档。

简而言之,许多数据库使用概率数据结构,例如 HyperLogLog(简称 HLL)。它用于唯一/去重计算,你可以在Spark、ElasticSearch、Flink、Postgres、BigQuery 和 Redis 等服务中看到它的效果。但通常你只能在聚合函数中应用此函数一次,例如查询每月唯一用户数——得到一个数字,这样就知足了。由于 HLL 结构没有对应的内部格式,因此无法重用预聚合或部分聚合的数据。而在 ClickHouse 中,你可以这样做,因为 HLL 结构是一致的。

ClickHouse 的速度非常快,其基本思路是处理原始数据而不是预聚合数据。但是让我们做个实验。例如,我们需要为上个月的唯一用户数计算一些指标。

设想:每天预聚合,然后汇总所有结果。这就是所谓的存储空间方法——以后你可以只汇总最后 30 个测量值来计算上个月的统计数据,或者只汇总最后 7 个测量值来计算上周的统计数据。

创建我们的预聚合表:

create table events_unique (
date Date,
group_id String,
client_id String,
event_type String,
product_id String,
value AggregateFunction(uniq, String)
) ENGINE = MergeTree(date, (group_id, client_id, event_type, product_id, date), 8192);

这里将我的聚合声明为 AggregateFunction(uniq, String)。我们关注的是一些独特的指标,这些指标是在 String 列上计算的(为了进一步优化,你可能应该使用 FixedString 或二进制数据)。

让我们将数据插入预聚合表:

INSERT INTO events_unique
SELECT date, group_id, client_id, event_type, product_id, uniqState(visitor_id) AS value
FROM events
GROUP BY date, group_id, client_id, event_type, product_id;

进行冒烟测试,确认其可以正常运行:

SELECT uniqMerge(value) FROM events_unique GROUP BY product_id;

现在让我们比较原始表和预聚合表的查询性能。原始查询:

SELECT uniq(visitor_id) AS c
FROM events
WHERE client_id = ‘aaaaaaaa’
AND event_type = ‘click’
AND product_id = ‘product1’
AND date >= ‘2017–01–20’
AND date < ‘2017–02–20’; ┌──────c─┐
│ 457954 │
└────────┘
1 rows in set. Elapsed: 0.948 sec. Processed 13.22 million rows, 1.61 GB (13.93 million rows/s., 1.70 GB/s.)

预聚合表的结果:

SELECT uniqMerge(value) AS c
FROM events_unique
WHERE client_id = ‘aaaaaaaa’
AND event_type = ‘click’
AND product_id = ‘product1’
AND date >= ‘2017–01–20’
AND date < ‘2017–02–20’; ┌──────c─┐
│ 457954 │
└────────┘
1 rows in set. Elapsed: 0.050 sec. Processed 39.39 thousand rows, 8.55 MB (781.22 thousand rows/s., 169.65 MB/s.)

结果表明,我们的处理时间缩短到 1/20。

在实践中,将物化视图与 AggregatingMergeTree 引擎结合使用,会比使用单独的表更方便。

总结

ClickHouse 可让你将聚合状态存储在数据库中,而不仅仅是存储在业务应用中,这有望带来颇具吸引力的性能优化和新用例。有关更多详细信息,请查看关于 AggregatingMergeTree 引擎的丰富文档。

后续

您已经了解了在 ClickHouse 中处理实时更新相关内容,本系列还包括其他内容:

原文链接

本文为阿里云原创内容,未经允许不得转载。

【ClickHouse 技术系列】- ClickHouse 聚合函数和聚合状态的更多相关文章

  1. 【SqlServer系列】聚合函数

    1   概述 本篇文章简要回顾SQL Server  聚合函数,MAX,MIN,SUM,AVG,SUM,CHECKSUM_EGG,COUNT,STDEV,STDEVP,VAR,VARP. 2   具体 ...

  2. Sql Server系列:聚合函数

    1 SUM SUM是一个求和函数,返回指定列值的总和.SUM 只能用于数字列. 其中忽略 Null 值. 语法 SUM ( [ ALL | DISTINCT ] expression ) OVER ( ...

  3. ClickHouse源码笔记5:聚合函数的源码再梳理

    笔者在源码笔记1之中分析过ClickHouse的聚合函数的实现,但是对于各个接口函数的实际如何共同工作的源码,回头看并没有那么明晰,主要原因是没有结合Aggregator的类来一起分析聚合函数的是如果 ...

  4. ClickHouse源码笔记1:聚合函数的实现

    由于工作的需求,后续笔者工作需要和开源的OLAP数据库ClickHouse打交道.ClickHouse是Yandex在2016年6月15日开源了一个分析型数据库,以强悍的单机处理能力被称道. 笔者在实 ...

  5. ClickHouse学习系列之三【配置文件说明】

    背景 最近花了些时间看了下ClickHouse文档,发现它在OLAP方面表现很优异,而且相对也比较轻量和简单,所以准备入门了解下该数据库系统.在介绍了安装和用户权限管理之后,本文对其配置文件做下相关的 ...

  6. ClickHouse学习系列之五【系统库system说明】

    背景 之前介绍过ClickHouse相关的系列文章,现在ClickHouse已经能正常使用起来了,包括副本和分片.因为ClickHouse已经可以提供服务了,现在需要关心的就是服务期间该数据库的各项性 ...

  7. ClickHouse学习系列之八【数据导入迁移&同步】

    背景 在介绍了一些ClickHouse相关的系列文章之后,大致对ClickHouse有了比较多的了解.它是一款非常优秀的OLAP数据库,为了更好的来展示其强大的OLAP能力,本文将介绍一些快速导入大量 ...

  8. 微软BI 之SSAS 系列 - 多维数据集中度量值设计时的聚合函数 (累加性_半累加性和非累加性)

    在 SSAS 系列 - 实现第一个 Cube 以及角色扮演维度,度量值格式化和计算成员的创建 中主要是通过已存在的维度和事实数据创建了一个多维数据集,并同时解释了 Role-Playing Dimen ...

  9. SQL Server温故系列(4):SQL 查询之集合运算 & 聚合函数

    1.集合运算 1.1.并集运算 UNION 1.2.差集运算 EXCEPT 1.3.交集运算 INTERSECT 1.4.集合运算小结 2.聚合函数 2.1.求行数函数 COUNT 2.2.求和函数 ...

  10. Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations

    一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...

随机推荐

  1. 16_AAC解码实战

    本文主要讲解:如何将AAC编码后的数据解码成PCM. 命令行 用法非常简单: ffmpeg -c:a libfdk_aac -i in.aac -f s16le out.pcm -c:a libfdk ...

  2. 如何用数字人技术让课堂活起来?番职院和3DCAT实时云渲染给出答案

    2023年4月20日,广州市第二届智慧教育成果巡展活动在番禺职业技术学院(下文简称番职院)举行,本次活动的主题是''智能AI助教-让课堂活起来''. 活动现场,瑞云科技受邀展示了其自主研发的瑞云数字人 ...

  3. 如何理解UDP 和 TCP? 区别? 应用场景?

    一.UDP UDP(User Datagram Protocol),用户数据包协议,是一个简单的面向数据报的通信协议,即对应用层交下来的报文,不合并,不拆分,只是在其上面加上首部后就交给了下面的网络层 ...

  4. 如何打造一个花里胡哨的Github个人主页?

    1.介绍 2.使用 2.1.创建一个同名仓库 2.2.引用模板 2.3.为内容添加有趣模块 2.3.1.徽章badge 2.3.2.waka 时间展示 2.3.3.展示 GitHub stars 等信 ...

  5. 常用命令--htpasswd--(网站加密)

    常用命令htpasswd(网站加密) 常用选项 htpasswd 是一个用于创建和管理HTTP基本认证密码文件的命令行工具,通常与Apache Web服务器一起使用.以下是 htpasswd 常用选项 ...

  6. 舒服了,学习了,踩到一个 Lombok 的坑!

    你好呀,我是歪歪. 踩坑了啊,最近踩了一个 lombok 的坑,有点意思,给你分享一波. 我之前写过一个公共的服务接口,这个接口已经有好几个系统对接并稳定运行了很长一段时间了,长到这个接口都已经交接给 ...

  7. 【K8S】如何进入kubernetes的一个pod

    如何进入kubernetes的一个pod呢,其实和进入docker的一个容器相似: 进入docker容器 : docker exec -ti <your-container-name> / ...

  8. verilog设计知识集合(2)

    verilog设计知识集合(2) 1.阻塞与非阻塞 阻塞赋值是存在先后关系的,非阻塞是不存在先后关系的.一般而言,阻塞用于组合逻辑,非阻塞用于时序逻辑(不一定).阻塞的执行时逐步赋值,非阻塞是同步赋值 ...

  9. OpenHarmony技术挑战课题征集

    OpenHarmony技术挑战课题征集 OpenAtom OpenHarmony(以下简称"OpenHarmony")是由开放原子开源基金会(OpenAtom Foundation ...

  10. winrt新dx截图最小实现

    转自:https://stackoverflow.co/questions/11283015 效果还是很不错的 #include <iostream> #include <Windo ...