Catlan--卡特兰数--组合数学
卡特兰数 \(Catlan\)
·赘述
其实发现卡特兰数和之前不同的是,前面的是给你公式,让你去求具体的例子,然而卡特兰数这里是给你大量例子来给你证明和解释什么是卡特兰数。
·定义
对于卡特兰数来说,他只是一个数列 \(Cat\)
\]
这里举一个例子来观察一下卡特兰数:
现在给你一个 \(( n + 1 ) \times ( n + 1 )\) 的矩阵,现在从底点 \(( 0 , 0 )\) 出发,可以向上或向右走一格,并且到达的点的纵坐标不大于横坐标,问最后到达 \(( n , n )\) 的走法种数。
可以发现对于每一个走到的点,其一定不会越过直线 \(y = x + 1\)
我们将终点关于直线对称得到 \(( n - 1 , n + 1 )\)
对于每一个从原点出发的点,到达新终点的话,一定会经过这条直线。那么将路径与直线的第一个交点之后的关于直线对称回来,得到了一条不符合题意,且终点不变的直线。
我们能发现,对于每一条不符合题意的路径(必须向右和向上,不符合指的是纵坐标不大于横坐标不成立)都能对称出如上的路径。
所以:不考虑纵坐标不大于横坐标的总方案数为:
\]
在 \(2n\) 次移动里有 \(n\) 次向上。
不符合纵坐标不大于横坐标的方案数为:
\]
在 \(2n\) 次移动里 \(n - 1\) 次向右。
所以答案为:
\]
· \(Catlan\) 数的一些变形
这里指的是式子。
首先可以由已知式推出的:
\]
\]
然后后面有可以由例子证明的:
\]
\(\dots\) timida , 放不出来图不好解释啊。
考虑到点 \(( i , i )\) 时 ,再往上的 \(( i + j , i + j )\) 都会被 \(( i , i )\) 开始跑时跑到。所以会有重。为了去重,到 \(( i , i )\) 再往后我们就一直往右跳,再一直往左跳。
( ... 不明白不要看了 )
·卡特兰数的一些题型变形
·01串
给定 \(n\) 个 \(0\) 和 \(n\) 个 \(1\) ,排成长度为 \(2n\) 的 \(01\) 串,使得对于任意一个前缀中 \(0\) 的个数 \(\ge 1\) 的个数 ,求排法数。
其实将这个变个型就变成上面的题。( \(0\) 为向右走 , \(1\) 为向上走 )
·括号匹配
\(n\) 个 (
和 \(n\) 个 )
, 求能够成功匹配的方案数 。 \(eg.()()(())()\)
·出入栈
给定 \(n\) 个元素,按照一定顺序入栈,求其出栈的方案数。
将入栈的补全时,就成为和括号一种的东西了。
结尾撒花 \(\color{pink}{✿✿ヽ(°▽°)ノ✿}\)
Catlan--卡特兰数--组合数学的更多相关文章
- uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)
option=com_onlinejudge&Itemid=8&category=471&page=show_problem&problem=4224" st ...
- Train Problem II(卡特兰数 组合数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...
- hdu5673 Robot 卡特兰数+组合数学+线性筛逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...
- BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- 组合数学的卡特兰数 TOJ 3551: Game of Connections
这个就是卡特兰数的经典问题 直接用这个公式就好了,但是这个题涉及大数的处理h(n)=h(n-1)*(4*n-2)/(n+1) 其实见过好几次大数的处理了,有一次他存的恰好不多于30位,直接分成两部分l ...
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
随机推荐
- 高通驱动树中的GPIO详解
高通驱动树中的GPIO详解 reference:https://blog.csdn.net/baidu_37503452/article/details/80257441 Drive Strength ...
- 七牛云 + PicGo
下载PicGo https://github.com/Molunerfinn/PicGo/releases/tag/v2.3.1 七牛云配置 1.AccessKey和SecretKey:可以在七牛云控 ...
- NXP i.MX 6ULL工业核心板硬件说明书( ARM Cortex-A7,主频792MHz)
1 硬件资源 创龙科技SOM-TLIMX6U是一款基于NXP i.MX 6ULL的ARM Cortex-A7高性能低功耗处理器设计的低成本工业级核心板,主频792MHz,通过邮票孔连 ...
- 光伏储能电厂设备连接iec61850平台解决方案
在当今日益发展的电力系统中,光伏储能技术以其独特的优势逐渐崭露头角,成为可再生能源领域的重要组成部分.而在光伏储能系统的运行与监控中,通信协议的选择与实现则显得至关重要.本文将重点介绍光伏储能系统中的 ...
- yb课堂 新版SSM-SpringBoot2.X 后端项目框架搭建 《二》
在线创建 https://start.spring.io/ 依赖项 Spring Boot核心包 <dependency> <groupId>org.springframewo ...
- .NET 按格式导出txt
效果图 后台代码 private void DownTxt() { try { StringBuilder sb = new StringBuilder(); for (int i = 0; i &l ...
- redis基本数据结构-列表
redis基本数据结构-列表list 特性 每个列表键最多存储 2^32 - 1个字符串元素 元素在列表中有序 元素在列表中不唯一 向列表左侧添加元素 lpush key value lpush nu ...
- IDEA之调试或运行的小助手日志插件Grep Console:不同颜色区分,查看日志看方便【工欲善其事必先利其器】
简介 Grep Console是一款方便开发者对idea控制台输出日志进行个性化管理的插件.这个插件还是很用的,在满屏的日志中,迅速找到自己关注的内容,调试程序的绝佳工具. 功能特性 Grep Con ...
- Web开发中【密码加密】详解
作为一名Web开发人员,我们经常需要与用户的帐号系统打交道,而这其中最大的挑战就是如何保护用户的密码.经常会看到用户账户数据库频繁被黑,所以我们必须采取一些措施来保护用户密码,以免导致不必要的数据泄露 ...
- JAVA Spring Boot快速开始
实践环境 Spring Boot 3.2.1 Maven 3.8.8 JDK 1.8.0_331 创建项目 通过http://start.spring.io/网站创建包含Spring Boot的项目, ...