Description

Link.

给定一棵 \(n\) 个点的树,设 \(E\) 为边集,\(V'_x,\ V'_y\) 分别为删去边 \((x,y)\) 后 点 \(x\) 所在的树的点集和点 \(y\) 所在的树的点集,求:

\[\sum_{(u,v)\in E}(\sum_{x\in V'_{u}}[x\text{ is the centroid of }V'_{u}]\times x+\sum_{y\in V'_{v}}[y\text{ is the centroid of }V'_{v}]\times y)
\]

Solution

重心,想到重儿子,我们记一个结点 \(u\) 的重儿子为 \(hb_{u}\)。

对于 \(\text{subtree}(u)\),如果 \(u\) 不是 \(\text{subtree}(u)\) 的 centroid,那么 \(\text{subtree}(u)\) 的 centroid 一定在 \(\text{subtree}(hb(u))\) 里。

然后我们找到对于 \(u\) 最深的一个重儿子 \(v\)(就是重链上的某个结点),满足 \(siz_{u}-siz_{v}\le\frac{siz_{u}}{2}\),那么 \(v\) 就是重心(还有 \(fa_{v}\) 需要判断一下)。

对于这道题,我们直接枚举每条边 \((u,v)\),设 \(u\) 比 \(v\) 浅,那么 \(v\) 就是 \(V'_{v}\) 的根,直接套就可以了。

对于 \(u\),我们换个根也就出来了,具体来说是交换 \((u,v)\) 的父子关系,不然直接交换 \((1,x)\) 太劣。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
vector<int> e[300010];
int t,n,siz[300010],hb[300010][20],fa[300010];
LL ans;
void dfs(int x,int las)
{
siz[x]=1,fa[x]=las;
for(unsigned int i=0;i<e[x].size();++i)
{
int y=e[x][i];
if(y^las)
{
dfs(y,x);
siz[x]+=siz[y];
if(siz[y]>siz[hb[x][0]]) hb[x][0]=y;
}
}
for(int i=1;i^20;++i) hb[x][i]=hb[hb[x][i-1]][i-1];
}
void cgfather(int x,int y)
{
siz[x]-=siz[y],siz[y]+=siz[x];
fa[x]=y,fa[y]=0;
if(hb[x][0]==y)
{
hb[x][0]=0;
for(unsigned int i=0;i<e[x].size();++i) if((e[x][i]^y)&&siz[e[x][i]]>siz[hb[x][0]]) hb[x][0]=e[x][i];
for(int i=1;i^20;++i) hb[x][i]=hb[hb[x][i-1]][i-1];
}
if(siz[x]>siz[hb[y][0]])
{
hb[y][0]=x;
for(int i=1;i^20;++i) hb[y][i]=hb[hb[y][i-1]][i-1];
}
}
void getans(int x)
{
#define eplist(x,all) (max(siz[hb[x][0]],(all)-siz[x])<=((all)>>1))
int now=x;
for(int i=19;~i;--i) if(hb[now][i]&&siz[x]-siz[hb[now][i]]<=(siz[x]>>1)) now=hb[now][i];
if(eplist(now,siz[x])) ans+=now;
if(eplist(fa[now],siz[x])) ans+=fa[now];
#undef eplist
}
void exdfs(int x,int las)
{
for(unsigned int i=0;i<e[x].size();++i)
{
int y=e[x][i];
if(y^las)
{
getans(y);
cgfather(x,y);
getans(x);
exdfs(y,x);
cgfather(y,x);
}
}
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1,x,y;i<n;++i)
{
scanf("%d %d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
}
dfs(1,0),exdfs(1,0);
printf("%lld\n",ans);
for(int i=1;i<=n;++i) e[i].clear(),siz[i]=hb[i][0]=fa[i]=0;
ans=0;
}
return 0;
}

Solution -「CSP 2019」Centroid的更多相关文章

  1. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  2. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  3. Solution -「CCO 2019」「洛谷 P5532」Sirtet

    \(\mathcal{Description}\)   Link.   在一个 \(n\times m\) 的网格图中,每个格子上是空白 . 或沙子 #,四联通的沙子会连成一个整体.令此时所有沙子块同 ...

  4. Solution -「ZJOI 2019」「洛谷 P5326」开关

    \(\mathcal{Description}\)   Link.   有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...

  5. Solution -「JOISC 2019」「LOJ #3036」指定城市

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,双向边权不相同.\(q\) 次询问,每次询问在树上标记 \(e\) 个点,标记的价值为所有趋 ...

  6. Solution -「ROI 2019」「LOJ #3192」课桌

    \(\mathcal{Description}\)   Link.   原题意足够简洁啦.( \(\mathcal{Solution}\)   乍一看比较棘手,但可以从座位的安排方式入手,有结论:   ...

  7. Solution -「HNOI 2019」「洛谷 P5293」白兔之舞

    \(\mathcal{Description}\)   Link.   不想概括题意.jpg \(\mathcal{Solution}\)   定义点集 \(S_c=\{(u,v)|v=c\}\):第 ...

  8. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  9. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  10. #3146. 「APIO 2019」路灯

    #3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...

随机推荐

  1. 慢 SQL 优化之索引的作用是什么?

    前言 本文针对 MySQL 数据库的 InnoDB 存储引擎,介绍其中索引的实现以及索引在慢 SQL 优化中的作用. 本文主要讨论不同场景下索引生效与失效的原因. 慢SQL与索引的关系 慢SQL优化原 ...

  2. .netcore中的虚拟文件EmbeddedFile

    以前一直比较好奇像swagger,cap,skywalking等组件是如何实现引用一个dll即可在网页上展示界面的,难道这么多html,js,css等都是硬编码写死在代码文件中的?后面接触apb里面也 ...

  3. Qt+QtWebApp开发笔记(五):http服务器html中使用json触发ajax与后台交互实现数据更新传递

    前言   前面完成了页面的跳转.登录,很多时候不刷新页面就想刷新局部数据,此时ajax就是此种技术,且是异步的.  本篇实现网页内部使用js调用ajax实现异步交互数据.  在js中使用 ajax是通 ...

  4. Apache Hudi 元数据字段揭秘

    介绍 Apache Hudi 最初由Uber于 2016 年开发,旨在实现一个交易型数据湖,该数据湖可以快速可靠地支持更新,以支持公司拼车平台的大规模增长. Apache Hudi 现在被业内许多人广 ...

  5. 行行AI人才沙龙第1期:《AI大模型创业投资,哪里才是真风口?》

    行行AI人才是博客园和顺顺智慧共同运营的AI行业人才全生命周期服务平台. 要说近期科技圈和投资圈"最靓的崽",那自然非"AI大模型"莫属.自ChatGPT发布以 ...

  6. Kurator v0.4.0版本更新4大内容,满足多云环境的复杂需求

    摘要:在最新发布的 v0.4.0 版本中,Kurator 进一步丰富了分布式云原生场景下的应用统一管理能力,以便更好地满足多云环境的复杂需求. 本文分享自华为云社区<Kurator v0.4.0 ...

  7. 【VUE】 文件预览

    [VUE] 文件预览 上传前预览 word文档:docx.doc 核心代码 import {renderAsync} from "docx-preview"; /** * 渲染do ...

  8. python连接数据库及查询包含中文错误解决方法

    使用MySQLdb库来连接数据库 import MySQLdb conn = MySQLdb.connect(host='127.0.0.1', user='root', passwd='', por ...

  9. git: failed to push some refs to

    错误原因 没有添加readme文件 解决方案 git pull --rebase origin master 至此问题解决

  10. 查看UUID

    查看硬盘UUID: 1. ls -l /dev/disk/by-uuid 2. blkid /dev/sda5 修改硬盘UUID: 1.新建和改变分区的UUID sudo uuidgen | xarg ...