大家应该对 Kubernetes Events 并不陌生,特别是当你使用 kubectl describe 命令或 Event API 资源来了解集群中的故障时。

$ kubectl get events

15m         Warning   FailedCreate                                                                                                      replicaset/ml-pipeline-visualizationserver-865c7865bc    

Error creating: pods "ml-pipeline-visualizationserver-865c7865bc-" is forbidden: error looking up service account default/default-editor: serviceaccount "default-editor" not found

尽管这些信息十分有用,但它只是临时的,保留时间最长为30天。如果出于审计或是故障诊断等目的,你可能想要把这些信息保留得更久,比如保存在像 Kafka 这样更持久、高效的存储中。然后你可以借助其他工具(如 Argo Events)或自己的应用程序订阅 Kafka 主题来对某些事件做出响应。

构建K8s事件处理链路

我们将构建一整套 Kubernetes 事件处理链路,其主要构成为:

  • Eventrouter,开源的 Kubernetes event 处理器,它可以将所有集群事件整合汇总到某个 Kafka 主题中。
  • Strimzi Operator,在 Kubernetes 中轻松管理 Kafka broker。
  • 自定义 Go 二进制文件以将事件分发到相应的 Kafka 主题中。

为什么要把事件分发到不同的主题中?比方说,在集群的每个命名空间中存在与特定客户相关的 Kubernetes 资产,那么在使用这些资产之前你当然希望将相关事件隔离开。

本示例中所有的配置、源代码和详细设置指示都已经放在以下代码仓库中:



 

创建 Kafka broker 和主题

我选择使用 Strimzi(strimzi.io/) 将 Kafka 部署到 Kubernetes 中。简而言之,它是用于创建和更新 Kafka broker 和主题的。你可以在官方文档中找到如何安装该 Operator 的详细说明:

首先,创建一个新的 Kafka 集群:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
name: kube-events
spec:
entityOperator:
topicOperator: {}
userOperator: {}
kafka:
config:
default.replication.factor: 3
log.message.format.version: "2.6"
offsets.topic.replication.factor: 3
transaction.state.log.min.isr: 2
transaction.state.log.replication.factor: 3
listeners:
- name: plain
port: 9092
tls: false
type: internal
- name: tls
port: 9093
tls: true
type: internal
replicas: 3
storage:
type: jbod
volumes:
- deleteClaim: false
id: 0
size: 10Gi
type: persistent-claim
version: 2.6.0
zookeeper:
replicas: 3
storage:
deleteClaim: false
size: 10Gi
type: persistent-claim

然后创建 Kafka 主题来接收我们的事件:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
name: cluster-events
spec:
config:
retention.ms: 7200000
segment.bytes: 1073741824
partitions: 1
replicas: 1

设置 EventRouter

在本教程中使用 kubectl apply 命令即可,我们需要编辑 router 的配置,以指明我们的 Kafka 端点和要使用的主题:

apiVersion: v1
data:
config.json: |-
{
"sink": "kafka",
"kafkaBrokers": "kube-events-kafka-bootstrap.kube-events.svc.cluster.local:9092",
"kafkaTopic": "cluster-events"
}
kind: ConfigMap
metadata:
name: eventrouter-cm

验证设置是否正常工作

我们的 cluster-events Kafka 的主题现在应该收到所有的事件。最简单的方法是在主题上运行一个 consumer 来检验是否如此。为了方便期间,我们使用我们的一个 Kafka broker pods,它已经有了所有必要的工具,你可以看到事件流:

kubectl -n kube-events exec kube-events-kafka-0 -- bin/kafka-console-consumer.sh \
--bootstrap-server kube-events-kafka-bootstrap:9092 \
--topic kube-events \
--from-beginning
{"verb":"ADDED","event":{...}}
{"verb":"ADDED","event":{...}}
...

编写 Golang 消费者

现在我们想将我们的 Kubernetes 事件依据其所在的命名空间分发到多个主题中。我们将编写一个 Golang 消费者和生产者来实现这一逻辑:

  • 消费者部分在 cluster-events 主题上监听传入的集群事件
  • 生产者部分写入与事件的命名空间相匹配的 Kafka 主题中

如果为Kafka配置了适当的选项(默认情况),就不需要特地创建新的主题,因为 Kafka 会默认为你创建主题。这是 Kafka 客户端 API 的一个非常酷的功能。

p, err := kafka.NewProducer(cfg.Endpoint)
if err != nil {
sugar.Fatal("cannot create producer")
}
defer p.Close() c, err := kafka.NewConsumer(cfg.Endpoint, cfg.Topic)
if err != nil {
sugar.Fatal("cannot create consumer")
}
defer c.Close() run := true
sigs := make(chan os.Signal, 1)
signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)
go func() {
sig := <-sigs
sugar.Infof("signal %s received, terminating", sig)
run = false
}() var wg sync.WaitGroup
go func() {
wg.Add(1)
for run {
data, err := c.Read()
if err != nil {
sugar.Errorf("read event error: %v", err)
time.Sleep(5 * time.Second)
continue
}
if data == nil {
continue
}
msg, err := event.CreateDestinationMessage(data)
if err != nil {
sugar.Errorf("cannot create destination event: %v", err)
}
p.Write(msg.Topic, msg.Message)
}
sugar.Info("worker thread done")
wg.Done()
}() wg.Wait()

完整代码在此处:

当然还有更高性能的选择,这取决于预计的事件量和扇出(fanout)逻辑的复杂性。对于一个更强大的实现,使用 Spark Structured Streaming 的消费者将是一个很好的选择。

部署消费者

构建并将二进制文件推送到 Docker 镜像之后,我们将它封装为 Kubernetes deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: events-fanout
name: events-fanout
spec:
replicas: 1
selector:
matchLabels:
app: events-fanout
template:
metadata:
labels:
app: events-fanout
spec:
containers:
- image: emmsys/events-fanout:latest
name: events-fanout
command: [ "./events-fanout"]
args:
- -logLevel=info
env:
- name: ENDPOINT
value: kube-events-kafka-bootstrap:9092
- name: TOPIC
value: cluster-events

检查目标主题是否创建

现在,新的主题已经创建完成:

kubectl -n kube-events get kafkatopics.kafka.strimzi.io -o name

kafkatopic.kafka.strimzi.io/cluster-events
kafkatopic.kafka.strimzi.io/kube-system
kafkatopic.kafka.strimzi.io/default
kafkatopic.kafka.strimzi.io/kafka
kafkatopic.kafka.strimzi.io/kube-events

你会发现你的事件根据其命名空间整齐地存储在这些主题中。

总结

访问 Kubernetes 历史事件日志可以使你对 Kubernetes 系统的状态有了更好的了解,但这单靠 kubectl 比较难做到。更重要的是,它可以通过对事件做出反应来实现集群或应用运维自动化,并以此来构建可靠、反应灵敏的软件。

原文链接:

https://hackernoon.com/monitor-your-kubernetes-cluster-events-with-eventrouter-golang-and-kafka-wh2a35l0

如何借助Kafka持久化存储K8S事件数据?的更多相关文章

  1. Scrapy持久化存储-爬取数据转义

    Scrapy持久化存储 爬虫爬取数据转义问题 使用这种格式,会自动帮我们转义 'insert into wen values(%s,%s)',(item['title'],item['content' ...

  2. iOS数据持久化存储

    本文中的代码托管在github上:https://github.com/WindyShade/DataSaveMethods 相对复杂的App仅靠内存的数据肯定无法满足,数据写磁盘作持久化存储是几乎每 ...

  3. k8s集群,使用pvc方式实现数据持久化存储

    环境: 系统 华为openEulerOS(CentOS7) k8s版本 1.17.3 master 192.168.1.244 node1 192.168.1.245 介绍: 在Kubernetes中 ...

  4. vuex数据持久化存储

    想想好还是说下vuex数据的持久化存储吧.依稀还记得在做第一个vue项目时,由于刚刚使用vue,对vue的一些基本概念只是有一个简单的了解.当涉及到非父子组件之间通信时,选择了vuex.只是后来竟然发 ...

  5. 通过Heketi管理GlusterFS为K8S集群提供持久化存储

    参考文档: Github project:https://github.com/heketi/heketi MANAGING VOLUMES USING HEKETI:https://access.r ...

  6. k8s的持久化存储PV&&PVC

    1.PV和PVC的引入 Volume 提供了非常好的数据持久化方案,不过在可管理性上还有不足. 拿前面 AWS EBS 的例子来说,要使用 Volume,Pod 必须事先知道如下信息: 当前 Volu ...

  7. redis多实例与主从同步及高级特性(数据过期机制,持久化存储)

    redis多实例 创建redis的存储目录 vim /usr/local/redis/conf/redis.conf #修改redis的配置文件 dir /data/redis/ #将存储路径配置修改 ...

  8. 4.深入k8s:容器持久化存储

    从一个例子入手PV.PVC Kubernetes 项目引入了一组叫作 Persistent Volume Claim(PVC)和 Persistent Volume(PV)的 API 对象用于管理存储 ...

  9. Kafka分片存储、消息分发和持久化机制

    Kafka 分片存储机制 Broker:消息中间件处理结点,一个 Kafka 节点就是一个 broker,多个 broker 可以组成一个 Kafka集群. Topic:一类消息,例如 page vi ...

  10. 如何接入 K8s 持久化存储?K8s CSI 实现机制浅析

    作者 王成,腾讯云研发工程师,Kubernetes contributor,从事数据库产品容器化.资源管控等工作,关注 Kubernetes.Go.云原生领域. 概述 进入 K8s 的世界,会发现有很 ...

随机推荐

  1. 研发效能负责人/研发效能1号位 |DevOps负责人

    想要做好业务,老板们除了要梳理好公司级别的业务目标,公司的组织架构,还要搭个有产出的班子,也就是找负责人.建团队,让组织架构充实起来.搭班子最重要的就是把负责人找到,就是团队1号位的人.本文主要讲团队 ...

  2. 把 ChatGPT 加入 Flutter 开发,会有怎样的体验?

    前言 ChatGPT 最近一直都处于技术圈的讨论焦点.它除了可作为普通用户的日常 AI 助手,还可以帮助开发者加速开发进度.声网社区的一位开发者"小猿"就基于 ChatGPT 做了 ...

  3. os模块的使用方法详解

    os模块 os模块负责程序与操作系统的交互,提供了访问操作系统底层的接口:即os模块提供了非常丰富的方法用来处理文件和目录. 使用的时候需要导入该模块:import os 常用方法如下: 方法名 作用 ...

  4. Prometheus性能调优-什么是高基数问题以及如何解决?

    背景 近期发现自己实验用的 Prometheus 性能出现瓶颈, 经常会出现如下告警: PrometheusMissingRuleEvaluations PrometheusRuleFailures ...

  5. Java:数据表的字段设计了默认值0不生效的原因

    在数据表里给字段设置了默认值为0,但是在插入的时候不生效,数据表设计如下 通过数据表生成的实体类 查看代码 @Data @TableName(value = "user") @No ...

  6. pip更新一直time out 的解决方法

    python -m pip install -U --force-reinstall pip 或者指定安装的镜像, 这里以安装numpy为例,运行pip install numpy -i http:/ ...

  7. Kafka为什么比其他消息中间件快

    更多内容,前往 IT-BLOG 无论 Kafka 作为 MQ 也好,还是作为存储层也罢,无非就是两个功能,一是 Producer 生产的数据存到 Broker,二是 Consumer 从 Broker ...

  8. 如何提取 x64 程序那些易失的方法参数

    一:背景 1. 讲故事 最近经常遇到有朋友反馈,在 x64 环境下如何提取线程栈中的方法参数,熟悉 x64 调用协定的朋友应该知道,这种协定范围下,方法的前四个参数都是用寄存器传递的,比如rcx,rd ...

  9. 在IIS 搭建FTP站点

    最近在项目中需要用到FTP,需要将生成的文件通过FTP上传网站. 在此记录下. FTP SSL设置,需要允许SSL连接. FTP 身份验证,匿名身份验证需要启用. FTP 授权规则,如果没有特殊情况允 ...

  10. 《爆肝整理》保姆级系列教程-玩转Charles抓包神器教程(14)-Charles过滤网络请求

    1.简介 在日常工作测试中,经常要抓包看请求的request,response是不是传的对,返回的字段值对不对,众多的请求中看得眼花缭乱,如何找到自己想要的请求,那么我们就需要过滤请求.Charles ...