理解Python协程:从yield/send到yield from再到async/await
Python中的协程大概经历了如下三个阶段:
1. 最初的生成器变形yield/send
2. 引入@asyncio.coroutine和yield from
3. 在最近的Python3.5版本中引入async/await关键字
一、生成器变形yield/send
普通函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是一个生成器。
def mygen(alist):
while len(alist) > 0:
c = randint(0, len(alist)-1)
yield alist.pop(c)
a = ["aa","bb","cc"]
c=mygen(a)
print(c)
输出:<generator object mygen at 0x02E5BF00>
1
2
3
4
5
6
7
8
9
像上面代码中的c就是一个生成器。生成器就是一种迭代器,可以使用for进行迭代。生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这一切都是靠生成器内部的send()函数实现的。
def gen():
value=0
while True:
receive=yield value
if receive=='e':
break
value = 'got: %s' % receive
g=gen()
print(g.send(None))
print(g.send('hello'))
print(g.send(123456))
print(g.send('e'))
1
2
3
4
5
6
7
8
9
10
11
12
13
上面生成器函数中最关键也是最易理解错的,就是receive=yield value这句,如果对循环体的执行步骤理解错误,就会失之毫厘,差之千里。
其实receive=yield value包含了3个步骤:
1、向函数外抛出(返回)value
2、暂停(pause),等待next()或send()恢复
3、赋值receive=MockGetValue() 。 这个MockGetValue()是假想函数,用来接收send()发送进来的值
执行流程:
1、通过g.send(None)或者next(g)启动生成器函数,并执行到第一个yield语句结束的位置。这里是关键,很多人就是在这里搞糊涂的。运行receive=yield value语句时,我们按照开始说的拆开来看,实际程序只执行了1,2两步,程序返回了value值,并暂停(pause),并没有执行第3步给receive赋值。因此yield value会输出初始值0。这里要特别注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。
2、通过g.send('hello'),会传入hello,从上次暂停的位置继续执行,那么就是运行第3步,赋值给receive。然后计算出value的值,并回到while头部,遇到yield value,程序再次执行了1,2两步,程序返回了value值,并暂停(pause)。此时yield value会输出”got: hello”,并等待send()激活。
3、通过g.send(123456),会重复第2步,最后输出结果为”got: 123456″。
4、当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
从上面可以看出, 在第一次send(None)启动生成器(执行1–>2,通常第一次返回的值没有什么用)之后,对于外部的每一次send(),生成器的实际在循环中的运行顺序是3–>1–>2,也就是先获取值,然后dosomething,然后返回一个值,再暂停等待。
二、yield from
看一段代码:
def g1():
yield range(5)
def g2():
yield from range(5)
it1 = g1()
it2 = g2()
for x in it1:
print(x)
for x in it2:
print(x)
1
2
3
4
5
6
7
8
9
10
11
12
输出:
range(0, 5)
0
1
2
3
4
这说明yield就是将range这个可迭代对象直接返回了。
而yield from解析了range对象,将其中每一个item返回了。
yield from iterable本质上等于for item in iterable: yield item的缩写版
来看一下例子,假设我们已经编写好一个斐波那契数列函数
def fab(max):
n,a,b = 0,0,1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1
f=fab(5)
1
2
3
4
5
6
7
8
fab不是一个普通函数,而是一个生成器。因此fab(5)并没有执行函数,而是返回一个生成器对象(生成器一定是迭代器iterator,迭代器一定是可迭代对象iterable)
现在我们来看一下,假设要在fab()的基础上实现一个函数,调用起始都要记录日志
def f_wrapper(fun_iterable):
print('start')
for item in fun_iterable:
yield item
print('end')
wrap = f_wrapper(fab(5))
for i in wrap:
print(i,end=' ')
1
2
3
4
5
6
7
8
现在使用yield from代替for循环
import logging
def f_wrapper2(fun_iterable):
print('start')
yield from fun_iterable #注意此处必须是一个可生成对象
print('end')
wrap = f_wrapper2(fab(5))
for i in wrap:
print(i,end=' ')
1
2
3
4
5
6
7
8
再强调一遍:yield from后面必须跟iterable对象(可以是生成器,迭代器)
三、asyncio.coroutine和yield from
yield from在asyncio模块中得以发扬光大。之前都是我们手工切换协程,现在当声明函数为协程后,我们通过事件循环来调度协程。
先看示例代码:
import asyncio,random
@asyncio.coroutine
def smart_fib(n):
index = 0
a = 0
b = 1
while index < n:
sleep_secs = random.uniform(0, 0.2)
yield from asyncio.sleep(sleep_secs) #通常yield from后都是接的耗时操作
print('Smart one think {} secs to get {}'.format(sleep_secs, b))
a, b = b, a + b
index += 1
@asyncio.coroutine
def stupid_fib(n):
index = 0
a = 0
b = 1
while index < n:
sleep_secs = random.uniform(0, 0.4)
yield from asyncio.sleep(sleep_secs) #通常yield from后都是接的耗时操作
print('Stupid one think {} secs to get {}'.format(sleep_secs, b))
a, b = b, a + b
index += 1
if __name__ == '__main__':
loop = asyncio.get_event_loop()
tasks = [
smart_fib(10),
stupid_fib(10),
]
loop.run_until_complete(asyncio.wait(tasks))
print('All fib finished.')
loop.close()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
yield from语法可以让我们方便地调用另一个generator。
本例中yield from后面接的asyncio.sleep()是一个coroutine(里面也用了yield from),所以线程不会等待asyncio.sleep(),而是直接中断并执行下一个消息循环。当asyncio.sleep()返回时,线程就可以从yield from拿到返回值(此处是None),然后接着执行下一行语句。
asyncio是一个基于事件循环的实现异步I/O的模块。通过yield from,我们可以将协程asyncio.sleep的控制权交给事件循环,然后挂起当前协程;之后,由事件循环决定何时唤醒asyncio.sleep,接着向后执行代码。
协程之间的调度都是由事件循环决定。
yield from asyncio.sleep(sleep_secs) 这里不能用time.sleep(1)因为time.sleep()返回的是None,它不是iterable,还记得前面说的yield from后面必须跟iterable对象(可以是生成器,迭代器)。
所以会报错:
yield from time.sleep(sleep_secs)
TypeError: ‘NoneType’ object is not iterable
四、async和await
弄清楚了asyncio.coroutine和yield from之后,在Python3.5中引入的async和await就不难理解了:可以将他们理解成asyncio.coroutine/yield from的完美替身。当然,从Python设计的角度来说,async/await让协程表面上独立于生成器而存在,将细节都隐藏于asyncio模块之下,语法更清晰明了。
加入新的关键字 async ,可以将任何一个普通函数变成协程
import time,asyncio,random
async def mygen(alist):
while len(alist) > 0:
c = randint(0, len(alist)-1)
print(alist.pop(c))
a = ["aa","bb","cc"]
c=mygen(a)
print(c)
输出:
<coroutine object mygen at 0x02C6BED0>
1
2
3
4
5
6
7
8
9
10
在上面程序中,我们在前面加上async,该函数就变成一个协程了。
但是async对生成器是无效的。async无法将一个生成器转换成协程。
还是刚才那段代码,我们把print改成yield
async def mygen(alist):
while len(alist) > 0:
c = randint(0, len(alist)-1)
yield alist.pop(c)
a = ["ss","dd","gg"]
c=mygen(a)
print(c)
1
2
3
4
5
6
7
8
可以看到输出
<async_generator object mygen at 0x02AA7170>
1
并不是coroutine 协程对象
所以我们的协程代码应该是这样的
import time,asyncio,random
async def mygen(alist):
while len(alist) > 0:
c = random.randint(0, len(alist)-1)
print(alist.pop(c))
await asyncio.sleep(1)
strlist = ["ss","dd","gg"]
intlist=[1,2,5,6]
c1=mygen(strlist)
c2=mygen(intlist)
print(c1)
1
2
3
4
5
6
7
8
9
10
11
要运行协程,要用事件循环
在上面的代码下面加上:
if __name__ == '__main__':
loop = asyncio.get_event_loop()
tasks = [
c1,
c2
]
loop.run_until_complete(asyncio.wait(tasks))
print('All fib finished.')
loop.close()
1
2
3
4
5
6
7
8
9
就可以看到交替执行的效果。
理解Python协程:从yield/send到yield from再到async/await的更多相关文章
- 深入理解python协程
目录 概述 生成器变形 yield/send yield send yield from asyncio.coroutine和yield from async和await 概述 由于 cpu和 磁盘读 ...
- Python协程笔记 - yield
生成器(yield)作为协程 yield实际上是生成器,在python 2.5中,为生成器增加了.send(value)方法.这样调用者可以使用send方法对生成器发送数据,发送的数据在生成器中会赋值 ...
- 用yield实现python协程
刚刚介绍了pythonyield关键字,趁热打铁,现在来了解一下yield实现协程. 引用官方的说法: 与线程相比,协程更轻量.一个python线程大概占用8M内存,而一个协程只占用1KB不到内存.协 ...
- python协程--yield和yield from
字典为动词“to yield”给出了两个释义:产出和让步.对于 Python 生成器中的 yield 来说,这两个含义都成立.yield item 这行代码会产出一个值,提供给 next(...) 的 ...
- 00.用 yield 实现 Python 协程
来源:Python与数据分析 链接: https://mp.weixin.qq.com/s/GrU6C-x4K0WBNPYNJBCrMw 什么是协程 引用官方的说法: 协程是一种用户态的轻量级线程,协 ...
- 终结python协程----从yield到actor模型的实现
把应用程序的代码分为多个代码块,正常情况代码自上而下顺序执行.如果代码块A运行过程中,能够切换执行代码块B,又能够从代码块B再切换回去继续执行代码块A,这就实现了协程 我们知道线程的调度(线程上下文切 ...
- 从yield 到yield from再到python协程
yield 关键字 def fib(): a, b = 0, 1 while 1: yield b a, b = b, a+b yield 是在:PEP 255 -- Simple Generator ...
- 从yield到yield from再到python协程
yield 关键字 def fib(): a,b = 0,1 while 1: yield b a,b = b,a+b yield是在:PEP 255 -- Simple Generators 这个p ...
- day-5 python协程与I/O编程深入浅出
基于python编程语言环境,重新学习了一遍操作系统IO编程基本知识,同时也学习了什么是协程,通过实际编程,了解进程+协程的优势. 一.python协程编程实现 1. 什么是协程(以下内容来自维基百 ...
随机推荐
- Python【第一篇】python安装、pip基本用法、变量、输入输出、流程控制、循环
一.python安装 Ubuntu下 系统版本已经同时安装了python2和python3 如果没有python3,可以参考这个貌似是印度阿三的安装视频:http://v.youku.com/v_sh ...
- Input标签使用整理
0 写在前面 对于程序而言I/O是一个程序的重要组成部分.程序的输入.输出接口,指定了程序与用户之间的交互方式.对于前端开发而言,input标签也有着其重要地位,它为用户向服务端提交数据提供了可能. ...
- 初识 go 语言:方法,接口及并发
目录 方法,接口及并发 方法 接口 并发 信道 结束语 前言: go语言的第四篇文章,主要讲述go语言中的方法,包括指针,结构体,数组,切片,映射,函数闭包等,每个都提供了示例,可直接运行. 方法,接 ...
- 关于FlexBox的布局
关于FlexBox的布局 基本要素 因为FlexBox是一整个模块并不是一个单独的属性,它涉及到很多东西包括它的所有设置属性.一些属性是需要被设置在容器(父级元素,称为『弹性容器』),而一些其他的属性 ...
- django系列7:修改404页面展示,优化模板,降低urlconf和模板之间的耦合,命名app将模板和app绑定
为了增加程序的友好和健壮性,修改view代码,处理以下如果出现404,页面的UI展示. 修改view代码 from django.http import Http404 from django.sho ...
- Aerospike-内存和硬盘混合存储的kv数据库
为什么会有Aerospike? Redis是一个纯内存型数据库,性能上没有多大问题. 但这又带来一个新问题,内存是很贵的,所以全内存的存储成本非常昂贵.为了节省成本,我们需要把一部分不经常用到的数据存 ...
- windows telnet 模拟 http请求
1. 开启windows自带的telnet客户端(控制面板 --> 程序 --> 启用或关闭windows功能 --> ) 2. 打开cmd,使用Telnet客户端 3. 按ctrl ...
- sublime中编译的sass如何改变css输出风格?【这里有答案】
由于在网上找了一遍没找到如果在sublime中将sass编译的css转换成为自己喜欢的风格,所以换了一种思路搜索到了答案,这里我将讲述如果更改. 首先sass总共有四种编译风格 (1) nested( ...
- CentOS7部署Dotnet Core2.1
前言 笔者在毫无Linux部署.net core的经验下,第一次用了15分钟完成部署,第二次在生产环境用了5分钟.下文将说明如何在CentOS7下完成.NetCore2.1的部署,包括如何创建ASP. ...
- linux中使用gdb调试程序
ref:https://blog.csdn.net/tenfyguo/article/details/8159176 一,什么是coredump 我们经常听到大家说到程序core掉了,需要定位解决, ...