传送门

只有两行,考虑递推,设\(f_i\)为没有那两个\(1*1\)的,前\(i\)列的方案,可以发现一次可以放一个竖的或两个横的,也就是\(f_i=f_{i-1}+f_{i-2}\)

再设\(g_i\)表示有那两个\(1*1\)的,前\(i\)列的方案,首先和\(f\)类似,可以放一个竖的或两个横的\(1*2\),然后\(1*1\)可以放出长度为奇数,\(\ge3\)的两种矩形,或者长度为偶数,\(\ge4\)的两种矩形,所以$$g_i=g_{i-1}+g_{i-2}+(2\sum_{j=3}^{i-j\ge 0} [j\mod 2=1]f_{i-j})+(2\sum_{j=4}^{i-j\ge 0} [j\mod 2=0]f_{i-j})$$

然后可以发现\(\sum_{j=3}^{i-j\ge 0} [j\mod 2=1]f_{i-j}=f_{i-2}-1\),\(\sum_{j=4}^{i-j\ge 0} [j\mod 2=0]f_{i-j}=f_{i-3}\),所以$$g_i=g_{i-1}+g_{i-2}+2(f_{i-2}-1)+2f_{i-3}$$

注意\(n\)很大,要使用矩乘优化

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double using namespace std;
const int mod=1e9+7;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct matrix
{
int a[6][6];
matrix(){memset(a,0,sizeof(a));}
void inii(){for(int i=0;i<6;++i) a[i][i]=1;}
matrix operator * (const matrix &bb) const
{
matrix an;
for(int i=0;i<6;++i)
for(int j=0;j<6;++j)
{
LL nw=0;
for(int k=0;k<6;++k) nw+=1ll*a[i][k]*bb.a[k][j];
an.a[i][j]=nw%mod;
}
return an;
}
matrix operator ^ (const LL &bb) const
{
matrix an,a=*this;
an.inii();
LL b=bb;
while(b)
{
if(b&1) an=an*a;
a=a*a,b>>=1;
}
return an;
}
}aa,bb; int main()
{
aa.a[0][0]=aa.a[0][1]=1,aa.a[0][5]=mod-1;
bb.a[0][0]=bb.a[1][0]=bb.a[0][1]=bb.a[1][2]=1;
bb.a[3][3]=bb.a[4][3]=bb.a[3][4]=bb.a[5][5]=1;
bb.a[1][3]=bb.a[2][3]=2,bb.a[5][3]=2;
int T=rd();
while(T--) printf("%d\n",(aa*(bb^(rd()-1))).a[0][3]);
return 0;
}

luogu P5303 [GXOI/GZOI2019]逼死强迫症的更多相关文章

  1. P5303 [GXOI/GZOI2019]逼死强迫症

    题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以 ...

  2. 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)

    [BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...

  3. [LOJ3086][GXOI/GZOI2019]逼死强迫症——递推+矩阵乘法

    题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][ ...

  4. 题解 洛谷 P5303 【[GXOI/GZOI2019]逼死强迫症】

    可以先去考虑没有\(1 \times 1\)的砖块的情况,对于最后一个位置只有两种情况,一个是竖着用一块砖铺设\(2 \times 1\),另一个为横着用两块砖铺设\(2 \times 2\). 设没 ...

  5. [GXOI/GZOI2019]逼死强迫症

    题目 设我们最后的答案是\(g_n\) 我们发现在最后竖着放一个\(2\times 1\)的,和横着放两个\(1\times 2\)的就可以区分开之前的方案了 所以如果仅仅使用\(1\times 2\ ...

  6. 【详●析】[GXOI/GZOI2019]逼死强迫症

    [详●析][GXOI/GZOI2019]逼死强迫症 脑子不够用了... [题目大意] 在\(2\times N\)的方格中用\(N-1\)块\(2\times 1\)的方砖和\(2\)块\(1\tim ...

  7. luogu P5305 [GXOI/GZOI2019]旧词

    传送门 先考虑\(k=1\),一个点的深度就是到根节点的路径上的点的个数,所以\(lca(x,y)\)的深度就是\(x\)和\(y\)到根路径的交集路径上的点的个数,那么对于一个询问,我们可以对每个点 ...

  8. luogu P5304 [GXOI/GZOI2019]旅行者

    传送门 所以这个\(5s\)是SMG 暴力是枚举每一个点跑最短路,然后有一个很拿衣服幼稚的想法,就是把所有给出的关键点当出发点,都丢到队列里,求最短路的时候如果当前点\(x\)某个相邻的点\(y\)是 ...

  9. luogu P5302 [GXOI/GZOI2019]特技飞行

    传送门 强行二合一可还行 首先\(c\)的贡献是不会变的,先考虑求出多少交点被矩形覆盖,交点的话可以按左端点纵坐标从下到上顺序枚举一条线段,然后维护右端点纵坐标的set,把之前处理过线段的右端点放进s ...

随机推荐

  1. Ubuntu 16.04.1 LTS配置LNMP使用wordpress搭建博客

    今天想用wordpress搭个博客,我的服务器是腾讯云的,然后腾讯云里有官方文档搭建的,但它是用centos为例, 搞得我的ubuntu跟着它走了些歪路,然后结合网上其它资料,终于一点一点的解决了. ...

  2. 【憩园】C#并发编程之异步编程(一)

    写在前面 C#5.0中,对异步编程进行了一次革命性的重构,引入了async和await这两个关键字,使得开发人员在不需要深刻了解异步编程的底层原理,就可以写出十分优美而又代码量极少的代码.如果使用得当 ...

  3. Bool的转录功能

    Bool的转录功能 and 当and前边的条件成立时,才执行后边的条件.当前边的条件不成立时,后边的条件一定执行. 特性实用: 不使用if.while写一个具有判断功能的代码. def fun(): ...

  4. qsort.c源码

    /* 版权所有(C) 1991-2019 自由软件资金会. 该文件属于是GUN C语言函数库,由Douglas C. Schmidt(schmidt@ics.uci.edu)所写. GUN C语言函数 ...

  5. Nginx 常见问题

    1. CreateFile() "C:\Users\zhang\Desktop\K\My Project\SSL-数字证书\Nginx配置\nginx-1.12.2/conf/nginx.c ...

  6. swiftmailer时没有设置https的选项,才可以发送成功。在linux下面

    <?php $su = 'register'; $ge = '1362836763@qq.com'; $co = 'Please register!'; send_mail($su,$ge,$c ...

  7. ajax存在跨域问题,为什么浏览器不允许js跨域请求?

    举个例子,马蓉平时去某个酒店开房,酒店有在线的管理系统,该管理系统地址叫 xxoo.hotels.com 然后她正常登录该酒店管理系统欣赏着自己跟宋喆开房的记录,这一切都很正常,然后xxoo.hote ...

  8. Windows Subsystem for Linux 环境变量

    WSL(Windows Subsystem for Linux )的环境变量是包含Linux子系统和Windows系统的,测试如下: wy@WY-PC:/mnt/c/Windows/System32$ ...

  9. Python IDLE 代码高亮主题

    Python IDLE 代码高亮主题 使用方法: 打开C盘我的 C:\Documents and Settings\你的用户名.idlerc文件夹 里面会有一个 config-highlight.cf ...

  10. promise和setTimeout执行顺序的问题

    提出问题,问题代码为 setTimeout(function(){console.log(1)},0); new Promise(function(resolve){ console.log(2) f ...