借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么。

自定义网络特征可视化

代码:

# coding: utf-8

from keras.models import Model
import cv2
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D,MaxPooling2D
from keras.layers import Activation
from pylab import *
import keras def get_row_col(num_pic):
squr = num_pic ** 0.5
row = round(squr)
col = row + 1 if squr - row > 0 else row
return row,col def visualize_feature_map(img_batch):
feature_map = np.squeeze(img_batch,axis=0)
print feature_map.shape feature_map_combination=[]
plt.figure() num_pic = feature_map.shape[2]
row,col = get_row_col(num_pic) for i in range(0,num_pic):
feature_map_split=feature_map[:,:,i]
feature_map_combination.append(feature_map_split)
plt.subplot(row,col,i+1)
plt.imshow(feature_map_split)
axis('off')
title('feature_map_{}'.format(i)) plt.savefig('feature_map.jpg')
plt.show() # 各个特征图按1:1 叠加
feature_map_sum = sum(ele for ele in feature_map_combination)
plt.imshow(feature_map_sum)
plt.savefig("feature_map_sum.jpg") def create_model():
model = Sequential() # 第一层CNN
# 第一个参数是卷积核的数量,第二三个参数是卷积核的大小
model.add(Convolution2D(9, 5, 5, input_shape=img.shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(4, 4))) #第二层CNN
model.add(Convolution2D(9, 5, 5, input_shape=img.shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3))) # 第三层CNN
model.add(Convolution2D(9, 5, 5, input_shape=img.shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) # 第四层CNN
model.add(Convolution2D(9, 3, 3, input_shape=img.shape))
model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 2))) return model if __name__ == "__main__": img = cv2.imread('001.jpg') model = create_model() img_batch = np.expand_dims(img, axis=0)
conv_img = model.predict(img_batch) # conv_img 卷积结果 visualize_feature_map(conv_img)

这里定义了一个4层的卷积,每个卷积层分别包含9个卷积、Relu激活函数和尺度不等的池化操作,系数全部是随机初始化。

输入的原图如下:

第一层卷积后可视化的特征图:

所有第一层特征图1:1融合后整体的特征图:

第二层卷积后可视化的特征图:

所有第二层特征图1:1融合后整体的特征图:

第三层卷积后可视化的特征图:

所有第三层特征图1:1融合后整体的特征图:

第四层卷积后可视化的特征图:

所有第四层特征图1:1融合后整体的特征图:

从不同层可视化出来的特征图大概可以总结出一点规律:

  • 1. 浅层网络提取的是纹理、细节特征
  • 2. 深层网络提取的是轮廓、形状、最强特征(如猫的眼睛区域)
  • 3. 浅层网络包含更多的特征,也具备提取关键特征(如第一组特征图里的第4张特征图,提取出的是猫眼睛特征)的能力
  • 4. 相对而言,层数越深,提取的特征越具有代表性
  • 5. 图像的分辨率是越来越小的

VGG19网络特征可视化

代码:

# coding: utf-8
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
from pylab import * def get_row_col(num_pic):
squr = num_pic ** 0.5
row = round(squr)
col = row + 1 if squr - row > 0 else row
return row,col def visualize_feature_map(img_batch):
feature_map = img_batch
print feature_map.shape feature_map_combination=[]
plt.figure() num_pic = feature_map.shape[2]
row,col = get_row_col(num_pic) for i in range(0,num_pic):
feature_map_split=feature_map[:,:,i]
feature_map_combination.append(feature_map_split)
plt.subplot(row,col,i+1)
plt.imshow(feature_map_split)
axis('off') plt.savefig('feature_map.jpg')
plt.show() # 各个特征图按1:1 叠加
feature_map_sum = sum(ele for ele in feature_map_combination)
plt.imshow(feature_map_sum)
plt.savefig("feature_map_sum.jpg") if __name__ == "__main__":
base_model = VGG19(weights='imagenet', include_top=False)
# model = Model(inputs=base_model.input, outputs=base_model.get_layer('block1_pool').output)
# model = Model(inputs=base_model.input, outputs=base_model.get_layer('block2_pool').output)
# model = Model(inputs=base_model.input, outputs=base_model.get_layer('block3_pool').output)
# model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output)
model = Model(inputs=base_model.input, outputs=base_model.get_layer('block5_pool').output) img_path = '001.jpg'
img = image.load_img(img_path)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block_pool_features = model.predict(x)
print(block_pool_features.shape) feature = block_pool_features.reshape(block_pool_features.shape[1:]) visualize_feature_map(feature)

从第一到第五层的特征图分别如下:

从第一层到第五层各特征图按1:1比例融合后特征依次为:

卷积神经网络特征图可视化(自定义网络和VGG网络)的更多相关文章

  1. CNN可视化技术总结(一)--特征图可视化

    导言: 在CV很多方向所谓改进模型,改进网络,都是在按照人的主观思想在改进,常常在说CNN的本质是提取特征,但并不知道它提取了什么特征,哪些区域对于识别真正起作用,也不知道网络是根据什么得出了分类结果 ...

  2. Keras中间层输出的两种方式,即特征图可视化

    训练好的模型,想要输入中间层的特征图,有两种方式: 1. 通过model.get_layer的方式.创建新的模型,输出为你要的层的名字. 创建模型,debug状态可以看到模型中,base_model/ ...

  3. GhostNet: 使用简单的线性变换生成特征图,超越MobileNetV3的轻量级网络 | CVPR 2020

    为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果.该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特 ...

  4. 跟我学算法-图像识别之图像分类(上)(基础神经网络, 卷积神经网络(CNN), AlexNet,NIN, VGG)

    1.基础神经网络: 输入向量x,权重向量w, 偏置标量b, 激活函数sigmoid(增加非线性度) 优化手段: 梯度下降优化, BP向后传播(链式规则) 梯度下降优化: 1. 使用得目标函数是交叉熵  ...

  5. 卷积神经网络(CNN)在语音识别中的应用

    前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neur ...

  6. pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法

    目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...

  7. visualization of filters keras 基于Keras的卷积神经网络(CNN)可视化

    https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/detail ...

  8. [DeeplearningAI笔记]卷积神经网络2.2经典网络

    4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [LeNet]--Lécun Y, Bottou L, Bengio Y, et al. Gradient-bas ...

  9. PyTorch基础——使用卷积神经网络识别手写数字

    一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的 ...

随机推荐

  1. Treap标准模板

    这是Treap的模板程序,支持Left/Right Rotate,Find the maxnum/minnum,Find the predecessor/successor of a node,Add ...

  2. MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents

    MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents 一.前言 当在m ...

  3. spoj mpoint

    题解: 判断每一次加进来的时候有几个被破坏,几个添加 然后单调栈维护 代码: #include<bits/stdc++.h> using namespace std; ; ,now,oo= ...

  4. Mybatis使用MySQL进行模糊查询时输入中文检索不到结果

    Mybatis使用MySQL进行模糊查询时输入中文检索时,需要在jdbcURL后增加参数   ?useUnicode=true&characterEncoding=UTF-8

  5. Python-接口自动化(五)

    python基础知识(五) (六)类与对象 类:某一类具有共同属性和特性的事物或者说是一个抽象的描述,比如说大佬类,你就是大佬类里面具体的一个实例.类一般包含属性和方法 (1)类的语法: class ...

  6. [转] How Bill Gates read books

    Bill Gates is one of the most famous figures in the business world. He is one of the richest men in ...

  7. Forth 内部解释程序工作流程

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  8. IDEA中项目编码格式设置

    自从换成IntelliJ IDEA 之后各种设置就成了问题,这不,在跟另一家公司做对接的时候,他们说我这边的http接口返回的都是乱码, 所有的接口我这边的都是访问过的,这个怎么会,我用360浏览器和 ...

  9. [Oracle][DATAGUARD] LOGICAL STANDBY环境里,有些SEQUENCE无法应用,导致Primary和Standby无法同期

    今天遇到了一个客户,问题是这样的,客户构筑了一个RACtoRAC的 LOGICAL STANDBY环境.并用EM在监视同期情况,发现EM页面上55115和55116这两个SEQUENCE一直在应用. ...

  10. 谷歌SEO初学者常见问题解答

    最近事特多,群里很多同学都在问一些非常基础的问题,实在没时间更没心情回答. (因为有些问题很基础,这些基础性问题根本不是一两句话能说清的,问这些问题的明显需要自己去好好学习,就跟小学生学加减法一样,自 ...