Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation

\[
f(a) = (f_{\alpha}(a))_{\alpha \in J},
\]

where \(f_{\alpha}: A \rightarrow X_{\alpha}\) for each \(\alpha\). Let \(\prod X_{\alpha}\) have the product topology. Then the function \(f\) is continuous if and only if each function \(f_{\alpha}\) is continuous.

Comment: This is an extension of Theorem 18.4, where only two component spaces are involved.

Proof: a) First, we prove the projection map is continuous, which is defined on the Cartesian space constructed from a \(J\)-tuple of component spaces .

For all \(\beta \in J\), let \(\pi_{\beta}: \prod X_{\alpha} \rightarrow X_{\beta}\) be the projection map. For arbitrary open set \(V_{\beta}\) in \(X_{\beta}\), its pre-image under \(\pi_{\beta}\) is \(\pi_{\beta}^{-1}(V_{\beta})\), which is a subbasis element for the product topology on \(\prod X_{\alpha}\). Therefore, \(\pi_{\beta}^{-1}(V_{\beta})\) is open and the projection map \(\pi_{\beta}\) is continuous.

Next, we notice that for all \(\alpha \in J\), the coordinate function \(f_{\alpha}: A \rightarrow X_{\alpha}\) is a composition of the two continuous functions \(f\) and \(\pi_{\alpha}\), i.e. \(f_{\alpha} = \pi_{\alpha} \circ f\). Then according to Theorem 18.2 (c), \(f_{\alpha}\) is continuous.

Remark: Because the box topology is finer than the product topology, the projection map is also continuous when the box topology is adopted for \(\prod X_{\alpha}\). Therefore, this part of the theorem is true for both product topology and box topology.

b) Analysis: To prove the continuity of a function, showing that the pre-image of any subbasis element in the range space is open in the domain space is more efficient than using basis element or raw open set in the range space. In addition, the subbasis element for the product topology on \(\prod X_{\alpha}\) has the form \(\pi_{\beta}^{-1}(U_{\beta})\) with \(U_{\beta}\) being a single coordinate component and open in \(X_{\beta}\). This is the clue of the proof.

For all \(\beta \in J\) and arbitrary open set \(U_{\beta}\) in \(X_{\beta}\), we have \(f_{\beta}^{-1}(U_{\beta}) = f^{-1} \circ \pi_{\beta}^{-1}(U_{\beta})\). Because \(f_{\beta}\) is continuous and \(U_{\beta}\) is open, \(f_{\beta}^{-1}(U_{\beta})\) is open. In addition, \(\pi_{\beta}^{-1}(U_{\beta})\) is an arbitrary subbasis element for \(\prod X_{\alpha}\) with the product topology, whose pre-image under \(f\) is just the open set \(f_{\beta}^{-1}(U_{\beta})\), therefore \(f\) is continuous.

Remark: Part b) of this theorem really depends on the adopted topology for \(\prod X_{\alpha}\), which can be understood as below.

At first, we will show that for all \(\vect{U} = \prod U_{\alpha}\) being a subset of \(\prod X_{\alpha}\), \(f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).

For all \(x \in f^{-1}(\vect{U})\), because \(f(x) \in \vect{U}\), then for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\), hence \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\) and \(f^{-1}(\vect{U}) \subset \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).

On the other hand, for all \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\), we have for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\). Therefore, \(f(x) \in \vect{U}\) and \(x \in f^{-1}(\vect{U})\). Hence \(\bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) \subset f^{-1}(\vect{U})\).

Next, if we assign the product topology to \(\prod X_{\alpha}\), for any \(\vect{U} = \prod U_{\alpha}\) with \(U_{\alpha}\) open in \(X_{\alpha}\) and only a finite number of them not equal to \(X_{\alpha}\), it is a basis element of the product topology. Let the set of all indices with which \(U_{\alpha} \neq X_{\alpha}\) be \(\{\alpha_1, \cdots, \alpha_n\}\) and also notice that when \(U_{\alpha} = X_{\alpha}\), \(f_{\alpha}^{-1}(U_{\alpha}) = A\), we have

\[
f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(U_{\alpha_i}),
\tag{*}
\label{eq:intersection}
\]

where those \(f_{\alpha}^{-1}(U_{\alpha})\) with \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\) do not contribute to the intersection. This indicates that \(f^{-1}(\vect{U})\) is a finite intersection of open sets which is still open. Hence \(f\) is continuous.

However, if the box topology is adopted for \(\prod X_{\alpha}\), qualitatively speaking, because the topology for the range space becomes finer, according to our previous post, it makes a function to be continuous more difficult. Specifically in this theorem, \(f^{-1}(\vect{U})\) in \eqref{eq:intersection} can be an intersection of infinite number of open sets \(U_{\alpha}\) not equal to \(X_{\alpha}\). Thus \(f^{-1}(\vect{U})\) may not be open anymore.

After understanding this point, it is not difficult to construct a counter example for part b) as below.

Let \(f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}\) be defined as \(f(t) = (t, t, \cdots)\). Select a basis element \(\vect{U}\) in \(\mathbb{R}^{\omega}\) such that the intersection of all its coordinate components is not open. For example, \(\vect{U} = \prod_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})\), which is a neighborhood of \(f(0) = (0, 0, \cdots)\).

For any basis element \((a, b)\) in \(\mathbb{R}\) containing \(0\), with \(a < 0\) and \(b > 0\), by letting \(\delta = \min\{-a, b\}\), we have \((-\delta, \delta) \subset (a, b)\) and \(0 \in (-\delta, \delta)\). The image of \((-\delta, \delta)\) under \(f\) is \(\prod_{n=1}^{\infty} (-\delta, \delta)\). Then there exist an \(n_0 \in \mathbb{Z}_+\) such that \((-\delta, \delta)\) is not contained in \((-\frac{1}{n_0}, \frac{1}{n_0})\). Therefore, \(\pi_{n_0}(f((-\delta, \delta)))\) is not contained in \(\pi_{n_0}(\vect{U})\) and \(\pi_{n_0}(f((a, b)))\) is not contained in \(\pi_{n_0}(\vect{U})\). Hence the image of \((a, b)\) under \(f\) is not contained in \(\vect{U}\). This contradicts Theorem 18.1 (4) and \(f\) is not continuous.

James Munkres Topology: Theorem 19.6的更多相关文章

  1. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  2. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  3. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  6. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  7. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. Linux 学习 (六) 关机与重启命令

    Linux达人养成计划 I 学习笔记 shutdown [选项] 时间 -c:取消前一个关机命令 -h:关机 -r:重启 shutdown命令会在关机或重启时自动保存系统中正在运行的服务,最安全的关机 ...

  2. min-max容斥/最值反演及其推广

    设\(S\)是一个集合,\(\max(S)\)和\(\min(S)\)分别表示集合中的最大值与最小值. 那么有如下式子成立: \[\max(S)=\sum_{T \subseteq S}(-1)^{| ...

  3. python doc格式转文本格式

    首先python是不能直接读写doc格式的文件的,这是python先天的缺陷.但是可以利用python-docx (0.8.6)库可以读取.docx文件或.txt文件,且一路畅通无阻. 这样的话,可以 ...

  4. VScode中python环境配置

    vscode中python环境配置 想要在vscode中运行python代码必须要告诉vscode使用哪个解释器才行 方法1. 打开命令面板(Ctrl+Shift+P)输入Python: Select ...

  5. POJChallengeRound2 Tree 【数学期望】

    题目分析: 我们令$G(x)$表示前$x$个点的平均深度,$F(x)$表示第$x$个点的期望深度. 有$F(x) = G(x-1)+1$,$G(x) = G(x-1)+\frac{1}{x}$ 所以答 ...

  6. css 溢出overflow

    css 溢出overflow 当一个元素被设置为固定大小,在这个元素中的内容如果超出元素的界限,就会出现溢出的现象. 通常情况下我们可以通过overflow来控制这个属性. overflow语法定义 ...

  7. <Android基础> (五) 广播机制

    1)接收系统广播:a.动态注册监听网络变化 b.静态注册实现开机启动 2)发送自定义广播:a.发送标准广播 b.发送有序广播 3)使用本地广播 第五章 5.1 广播机制 Android中的每个程序都可 ...

  8. vue之——从彩笔的进步之路

    因为这个文章开的有点晚,不可能说从头教学vue的使用,所以大概还是记录一下我的学习路线吧: 一开始是想学一个前端框架,最后选择了vue,一开始是看了表严肃的vue课程,b站有,讲的相当好,就算打个小广 ...

  9. jmeter笔记(2)--组件介绍

    1.测试计划 测试计划(Test Plan)是使用JMeter进行测试的起点,它是其它JMeter测试元件的容器. 2.Threads(Users)-线程组 每个测试需求的必备组件,是用来模拟用户并发 ...

  10. ES6部分知识点总结

    注:本文通过yck前端面试小册学习整理而得,记录下来供自己查阅 1.var 变量提升 使用var声明的变量,声明会被提升到作用域的顶部 举几个例子: eg1: console.log(a) // un ...