James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation
\[
f(a) = (f_{\alpha}(a))_{\alpha \in J},
\]
where \(f_{\alpha}: A \rightarrow X_{\alpha}\) for each \(\alpha\). Let \(\prod X_{\alpha}\) have the product topology. Then the function \(f\) is continuous if and only if each function \(f_{\alpha}\) is continuous.
Comment: This is an extension of Theorem 18.4, where only two component spaces are involved.
Proof: a) First, we prove the projection map is continuous, which is defined on the Cartesian space constructed from a \(J\)-tuple of component spaces .
For all \(\beta \in J\), let \(\pi_{\beta}: \prod X_{\alpha} \rightarrow X_{\beta}\) be the projection map. For arbitrary open set \(V_{\beta}\) in \(X_{\beta}\), its pre-image under \(\pi_{\beta}\) is \(\pi_{\beta}^{-1}(V_{\beta})\), which is a subbasis element for the product topology on \(\prod X_{\alpha}\). Therefore, \(\pi_{\beta}^{-1}(V_{\beta})\) is open and the projection map \(\pi_{\beta}\) is continuous.
Next, we notice that for all \(\alpha \in J\), the coordinate function \(f_{\alpha}: A \rightarrow X_{\alpha}\) is a composition of the two continuous functions \(f\) and \(\pi_{\alpha}\), i.e. \(f_{\alpha} = \pi_{\alpha} \circ f\). Then according to Theorem 18.2 (c), \(f_{\alpha}\) is continuous.
Remark: Because the box topology is finer than the product topology, the projection map is also continuous when the box topology is adopted for \(\prod X_{\alpha}\). Therefore, this part of the theorem is true for both product topology and box topology.
b) Analysis: To prove the continuity of a function, showing that the pre-image of any subbasis element in the range space is open in the domain space is more efficient than using basis element or raw open set in the range space. In addition, the subbasis element for the product topology on \(\prod X_{\alpha}\) has the form \(\pi_{\beta}^{-1}(U_{\beta})\) with \(U_{\beta}\) being a single coordinate component and open in \(X_{\beta}\). This is the clue of the proof.
For all \(\beta \in J\) and arbitrary open set \(U_{\beta}\) in \(X_{\beta}\), we have \(f_{\beta}^{-1}(U_{\beta}) = f^{-1} \circ \pi_{\beta}^{-1}(U_{\beta})\). Because \(f_{\beta}\) is continuous and \(U_{\beta}\) is open, \(f_{\beta}^{-1}(U_{\beta})\) is open. In addition, \(\pi_{\beta}^{-1}(U_{\beta})\) is an arbitrary subbasis element for \(\prod X_{\alpha}\) with the product topology, whose pre-image under \(f\) is just the open set \(f_{\beta}^{-1}(U_{\beta})\), therefore \(f\) is continuous.
Remark: Part b) of this theorem really depends on the adopted topology for \(\prod X_{\alpha}\), which can be understood as below.
At first, we will show that for all \(\vect{U} = \prod U_{\alpha}\) being a subset of \(\prod X_{\alpha}\), \(f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
For all \(x \in f^{-1}(\vect{U})\), because \(f(x) \in \vect{U}\), then for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\), hence \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\) and \(f^{-1}(\vect{U}) \subset \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
On the other hand, for all \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\), we have for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\). Therefore, \(f(x) \in \vect{U}\) and \(x \in f^{-1}(\vect{U})\). Hence \(\bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) \subset f^{-1}(\vect{U})\).
Next, if we assign the product topology to \(\prod X_{\alpha}\), for any \(\vect{U} = \prod U_{\alpha}\) with \(U_{\alpha}\) open in \(X_{\alpha}\) and only a finite number of them not equal to \(X_{\alpha}\), it is a basis element of the product topology. Let the set of all indices with which \(U_{\alpha} \neq X_{\alpha}\) be \(\{\alpha_1, \cdots, \alpha_n\}\) and also notice that when \(U_{\alpha} = X_{\alpha}\), \(f_{\alpha}^{-1}(U_{\alpha}) = A\), we have
\[
f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(U_{\alpha_i}),
\tag{*}
\label{eq:intersection}
\]
where those \(f_{\alpha}^{-1}(U_{\alpha})\) with \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\) do not contribute to the intersection. This indicates that \(f^{-1}(\vect{U})\) is a finite intersection of open sets which is still open. Hence \(f\) is continuous.
However, if the box topology is adopted for \(\prod X_{\alpha}\), qualitatively speaking, because the topology for the range space becomes finer, according to our previous post, it makes a function to be continuous more difficult. Specifically in this theorem, \(f^{-1}(\vect{U})\) in \eqref{eq:intersection} can be an intersection of infinite number of open sets \(U_{\alpha}\) not equal to \(X_{\alpha}\). Thus \(f^{-1}(\vect{U})\) may not be open anymore.
After understanding this point, it is not difficult to construct a counter example for part b) as below.
Let \(f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}\) be defined as \(f(t) = (t, t, \cdots)\). Select a basis element \(\vect{U}\) in \(\mathbb{R}^{\omega}\) such that the intersection of all its coordinate components is not open. For example, \(\vect{U} = \prod_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})\), which is a neighborhood of \(f(0) = (0, 0, \cdots)\).
For any basis element \((a, b)\) in \(\mathbb{R}\) containing \(0\), with \(a < 0\) and \(b > 0\), by letting \(\delta = \min\{-a, b\}\), we have \((-\delta, \delta) \subset (a, b)\) and \(0 \in (-\delta, \delta)\). The image of \((-\delta, \delta)\) under \(f\) is \(\prod_{n=1}^{\infty} (-\delta, \delta)\). Then there exist an \(n_0 \in \mathbb{Z}_+\) such that \((-\delta, \delta)\) is not contained in \((-\frac{1}{n_0}, \frac{1}{n_0})\). Therefore, \(\pi_{n_0}(f((-\delta, \delta)))\) is not contained in \(\pi_{n_0}(\vect{U})\) and \(\pi_{n_0}(f((a, b)))\) is not contained in \(\pi_{n_0}(\vect{U})\). Hence the image of \((a, b)\) under \(f\) is not contained in \(\vect{U}\). This contradicts Theorem 18.1 (4) and \(f\) is not continuous.
James Munkres Topology: Theorem 19.6的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Djangon的坑
<a href="/del_student/?pk={{ students.pk }}"></a> 在django中当你写入这样的语句是,pk={{ stu ...
- DIV正确打开方式 ~~~~哈哈哈
<div style='margin-left:25px;margin-right:25px;margin-top:10px;height:350px;min-height:50px;backg ...
- 爬虫之Scrapy框架介绍
Scrapy介绍 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内 ...
- MYSQL实战-------丁奇(极客时间)学习笔记
1.基础架构:一条sql查询语句是如何执行的? mysql> select * from T where ID=10: 2.基础架构:一条sql更新语句是如何执行的? mysql> upd ...
- [Qualcomm]A Detailed History of Qualcomm 高通的前世今生
https://www.semiwiki.com/forum/content/7353-detailed-history-qualcomm.html
- django restframework jwt
既然要来学习jwt(json web token),那么我们肯定是先要了解jwt的优势以及应用场景--跨域认证. $ pip install djangorestframework-jwt 传统coo ...
- intellij 操作
默认快捷键 ctrl+alt+l 格式化代码 alt+insert代码自动生成 代码生成 编辑框右键>generator>选择
- 使用idea搭建maven项目
前言---2018-11-24 博主最近呀,也是一直在看书,但是呢有许多小伙伴和博主反应,在eclipse都会搭建maven项目,但是呢到了idea就不会了,于是了博主就起了个早床写一遍博客咯.希望对 ...
- mycat 使用
介绍 支持SQL92标准 支持MySQL.Oracle.DB2.SQL Server.PostgreSQL等DB的常见SQL语法 遵守Mysql原生协议,跨语言,跨平台,跨数据库的通用中间件代理. 基 ...
- 前向分步算法 && AdaBoost算法 && 提升树(GBDT)算法 && XGBoost算法
1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本 ...