题解:

水题

两种做法:

1.我的

我们假设$xi>xj$ 那么拆开绝对值

$$xi-w[i]>x[j]+w[j]$$

由于$w[i]>0$,所以$x[i]+w[i]>x[j]+w[j]$

然后我们只需要在线段树上查询一段的最大值然后再单点取max就行了

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (itn i=t;i>=h;i--)
#define me(x) memset(x,0,sizeof(x))
#define ll long long
#define mid (h+((t-h)>>1))
namespace IO
{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int Z,C=-;
template<class T>void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z);
}
IL void wer1()
{
sr[++C]=' ';
}
IL void wer2()
{
sr[++C]='\n';
}
template<class T>IL void maxa(T &x,T y) { if (x<y) x=y; }
template<class T>IL void mina(T &x,T y) { if (x>y) x=y; }
template<class T>IL T MAX(T x,T y) {return x>y?x:y;}
template<class T>IL T MIN(T x,T y) {return x<y?x:y;}
};
using namespace IO;
const int N=3e5;
const int N1=8e6;
const int M=2e9;
struct re{
int x,w;
}a[N];
int rt,n;
bool cmp(re x,re y)
{
return x.x<y.x;
}
struct sgt{
int cnt,ls[N1],rs[N1],v[N1];
void change(int &x,int h,int t,int pos,int k)
{
if (!x) x=++cnt;
maxa(v[x],k);
if (h==t) return;
if (pos<=mid) change(ls[x],h,mid,pos,k);
else change(rs[x],mid+,t,pos,k);
}
int query(int x,int h,int t,int h1,int t1)
{
if (h1<=h&&t<=t1) return v[x];
int ans=;
if (h1<=mid) maxa(ans,query(ls[x],h,mid,h1,t1));
if (mid<t1) maxa(ans,query(rs[x],mid+,t,h1,t1));
return ans;
}
}S;
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
read(n);
rep(i,,n)
{
read(a[i].x); read(a[i].w);
}
sort(a+,a+n+,cmp);
rep(i,,n)
{
int k=a[i].x-a[i].w;
int ans=;
if (k>) ans=S.query(rt,,M,,k);
S.change(rt,,M,a[i].w+a[i].x,ans+);
}
cout<<S.v[]<<endl;
return ;
}

2.题解的做法

像这种题目比较容易想到用贪心去解决

我们把绝对值等价一下

$$w[j]+x[j]<=x[i]-w[i] \ \ \ \ w[i]+x[i]<=x[j]-w[j] $$两个满足一个即可

而我们发现对任意两个用这个不等式等价于所有$[x[i]-w[i],x[i]+w[i]]$区间都不想相交

这样我们只需要按照右端点排序贪心取就可以了

527D.Clique Problem的更多相关文章

  1. CodeForces - 527D Clique Problem (图,贪心)

    Description The clique problem is one of the most well-known NP-complete problems. Under some simpli ...

  2. Codeforces 527D Clique Problem

    http://codeforces.com/problemset/problem/527/D 题意:给出一些点的xi和wi,当|xi−xj|≥wi+wj的时候,两点间存在一条边,找出一个最大的集合,集 ...

  3. 527D Clique Problem 判断一维线段没有两辆相交的最大线段数量

    这题说的是给了n个位置 在x轴上 每个位置有一个权值为wi,然后将|xi - xj|>=wi+wj ,满足这个条件的点建一条边,计算着整张图中有多少多少个点构成的子图,使得这个子图的节点数尽量的 ...

  4. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  5. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  6. Codeforces Round #296 (Div. 1) B - Clique Problem

    B - Clique Problem 题目大意:给你坐标轴上n个点,每个点的权值为wi,两个点之间有边当且仅当 |xi - xj| >= wi + wj, 问你两两之间都有边的最大点集的大小. ...

  7. Codeforces Round #296 (Div. 1) B. Clique Problem 贪心

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  8. B. Clique Problem(贪心)

    题目链接: B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. 回溯法——最大团问题(Maximum Clique Problem, MCP)

    概述: 最大团问题(Maximum Clique Problem, MCP)是图论中一个经典的组合优化问题,也是一类NP完全问题.最大团问题又称为最大独立集问题(Maximum Independent ...

随机推荐

  1. [模板] 虚树 && bzoj2286-[Sdoi2011]消耗战

    简介 虚树可以解决一些关于树上一部分节点的问题. 对于一棵树 \(T\) 的一个子集 \(S\), 可以在 \(O(|S| \log |S|)\) 的时间复杂度内求出 \(S\) 的虚树. 虚树包括根 ...

  2. jQuery之事件和批量操作、事件委托示例

    一.常用事件 click(function(){...}) // 点击时触发 focus(function(){...}) // 获得焦点触发 blur(function(){...}) // 失去焦 ...

  3. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  4. IDEA配置注释模板

    直接进入主题: Ctrl+Alt+S进入设置界面(我没改过按键映射,你也可以从File-OtherSetting进入设置),找到Editor->File and Code Templates,先 ...

  5. windows下搭建vue开发环境+IIS部署

    原创]win10下搭建vue开发环境  https://www.cnblogs.com/ixxonline/p/6007885.html 特别说明:下面任何命令都是在windows的命令行工具下进行输 ...

  6. 模板方法模式-Template Method(Java实现)

    模板方法模式-Template Method 在模板模式中, 处理的流程被定义在父类中, 而具体的处理则交给了子类. 类关系图很简单: Template接口 这里定义了子类需要实现的方法(before ...

  7. MongoDB实战性能优化

    1. 性能优化分类 mongodb性能优化分为软件层面和操作系统层面. 软件层面,一般通过修改mongodb软件配置参数来达到,这个需要非常熟悉mongodb里面的各种配置参数: 而操作系统层面,相对 ...

  8. MongoDB and GUI 管理界面

    MongoDB https://www.mongodb.com/ MongoDB AtlasDatabase as a Service The best way to deploy, operate, ...

  9. Linux-Centos 虚拟机安装

    Centos安装方法 第一步:一般只有第一项和第三项有用 其余的没啥卵用 第二步:提示检查镜像完整性,这里我们不要检查  选 skip 继续(之前尝试选择OK,最后安装失败了,也不想找原因了) 第三步 ...

  10. 第30月第3天 iOS图标icon自动生成和自定义尺寸

    1. http://icon.wuruihong.com/ https://www.jianshu.com/p/684751c14735 2.status bar UIViewControllerBa ...