学习PYTHON之路, DAY 10 进程、线程、协程篇
线程
线程是应用程序中工作的最小单元。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
直接调用
import threading
import time def show(arg):
time.sleep(1)
print 'thread'+str(arg) for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start() print 'main thread stop'
继承式调用
import threading
import time class MyThread(threading.Thread):
def __init__(self,num):
threading.Thread.__init__(self)
self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == '__main__': t1 = MyThread(1)
t2 = MyThread(2)
t1.start()
t2.start()
更多方法:
- start 线程准备就绪,等待CPU调度
- setName 为线程设置名称
- getName 获取线程名称
- setDaemon 设置为后台线程或前台线程(默认)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 - join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
- run 线程被cpu调度后自动执行线程对象的run方法
import time
import threading def run(n): print('[%s]------running----\n' % n)
time.sleep(2)
print('--done--') def main():
for i in range(5):
t = threading.Thread(target=run,args=[i,])
t.start()
t.join(1)
print('starting thread', t.getName()) m = threading.Thread(target=main,args=[])
m.setDaemon(True) #将main线程设置为Daemon线程,它做为程序主线程的守护线程,当主线程退出时,m线程也会退出,由m启动的其它子线程会同时退出,不管是否执行完任务
m.start()
m.join(timeout=2)
print("---main thread done----")
守护线程
线程锁(Lock、RLock)
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。
import threading
import time gl_num = 0 lock = threading.RLock() def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release() for i in range(10):
t = threading.Thread(target=Func)
t.start()
信号量(Semaphore)
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。
import threading,time def run(n):
semaphore.acquire()
time.sleep(1)
print("run the thread: %s" %n)
semaphore.release() if __name__ == '__main__': num= 0
semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
for i in range(20):
t = threading.Thread(target=run,args=(i,))
t.start()
事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
import threading def do(event):
print 'start'
event.wait()
print 'execute' event_obj = threading.Event()
for i in range(10):
t = threading.Thread(target=do, args=(event_obj,))
t.start() event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
event_obj.set()
条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
def condition_func(): ret = False
inp = input('>>>')
if inp == '':
ret = True return ret def run(n):
con.acquire()
con.wait_for(condition_func)
print("run the thread: %s" %n)
con.release() if __name__ == '__main__': con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()
队列
- class
queue.
Queue
(maxsize=0) #先入先出
- class
queue.
LifoQueue
(maxsize=0) #last in fisrt out - class
queue.
PriorityQueue
(maxsize=0) #存储数据时可设置优先级的队列
Queue.
qsize
()
Queue.
empty
() #return True if empty
Queue.
full
() # return True if full
Queue.
put
(item, block=True, timeout=None)Queue.
put_nowait
(item)Equivalent to put(item, False)
.
Queue.
get
(block=True, timeout=None)Queue.
get_nowait
()
Equivalent to get(False)
Queue.
task_done
()
import time,random
import queue,threading
q = queue.Queue()
def Producer(name):
count = 0
while count <20:
time.sleep(random.randrange(3))
q.put(count)
print('Producer %s has produced %s baozi..' %(name, count))
count +=1
def Consumer(name):
count = 0
while count <20:
time.sleep(random.randrange(4))
if not q.empty():
data = q.get()
print(data)
print('\033[32;1mConsumer %s has eat %s baozi...\033[0m' %(name, data))
else:
print("-----no baozi anymore----")
count +=1
p1 = threading.Thread(target=Producer, args=('A',))
c1 = threading.Thread(target=Consumer, args=('B',))
p1.start()
c1.start()
线程池
import queue
import threading
import time class ThreadPool:
def __init__(self, maxsize=5):
self.maxsize = maxsize
self._q = queue.Queue(maxsize)
for i in range(maxsize):
self._q.put(threading.Thread)
# 【threading.Thread,threading.Thread,threading.Thread,threading.Thread,threading.Thread】
def get_thread(self):
return self._q.get() def add_thread(self):
self._q.put(threading.Thread) pool = ThreadPool(5) def task(arg,p):
print(arg)
time.sleep(1)
p.add_thread() for i in range(100):
# threading.Thread类
t = pool.get_thread()
obj = t(target=task,args=(i,pool,))
obj.start()
简单版
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:Alex Li
import queue
import threading
import contextlib
import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num, max_task_num = None):
if max_task_num:
self.q = queue.Queue(max_task_num)
else:
self.q = queue.Queue()
self.max_num = max_num
self.cancel = False
self.terminal = False
self.generate_list = []
self.free_list = [] def run(self, func, args, callback=None):
"""
线程池执行一个任务
:param func: 任务函数
:param args: 任务函数所需参数
:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
:return: 如果线程池已经终止,则返回True否则None
"""
if self.cancel:
return
if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
self.generate_thread()
w = (func, args, callback,)
self.q.put(w) def generate_thread(self):
"""
创建一个线程
"""
t = threading.Thread(target=self.call)
t.start() def call(self):
"""
循环去获取任务函数并执行任务函数
"""
current_thread = threading.currentThread
self.generate_list.append(current_thread) event = self.q.get()
while event != StopEvent: func, arguments, callback = event
try:
result = func(*arguments)
success = True
except Exception as e:
success = False
result = None if callback is not None:
try:
callback(success, result)
except Exception as e:
pass with self.worker_state(self.free_list, current_thread):
if self.terminal:
event = StopEvent
else:
event = self.q.get()
else: self.generate_list.remove(current_thread) def close(self):
"""
执行完所有的任务后,所有线程停止
"""
self.cancel = True
full_size = len(self.generate_list)
while full_size:
self.q.put(StopEvent)
full_size -= 1 def terminate(self):
"""
无论是否还有任务,终止线程
"""
self.terminal = True while self.generate_list:
self.q.put(StopEvent) self.q.empty() @contextlib.contextmanager
def worker_state(self, state_list, worker_thread):
"""
用于记录线程中正在等待的线程数
"""
state_list.append(worker_thread)
try:
yield
finally:
state_list.remove(worker_thread) pool = ThreadPool(5) def callback(status, result):
# status, execute action status
# result, execute action return value
pass def action(i):
print(i) for i in range(300):
ret = pool.run(action, (i,), callback) # time.sleep(5)
# print(len(pool.generate_list), len(pool.free_list))
# print(len(pool.generate_list), len(pool.free_list))
复杂版
上下文管理
import contextlib @contextlib.contextmanager #加了这个装饰器,可以用with
def work(free_list, worker_thread):
free_list.append(worker_thread)
try:
yield
finally:
free_list.remove(worker_thread) free_list = []
worker_thread = ''
with work(free_list, worker_thread):
print(123)
运行顺序
多进程
from multiprocessing import Process
import time
def f(name):
time.sleep(2)
print('hello', name) if __name__ == '__main__': #在windos进程只能做测试,一定要写这句
p = Process(target=f, args=('bob',))
p.start()
p.join()
进程间通讯
Queues
使用方法跟threading里的queue差不多
from multiprocessing import Process, Queue def f(i,q):
print(i,q.get()) if __name__ == '__main__':
q = Queue() q.put("h1")
q.put("h2")
q.put("h3") for i in range(10):
p = Process(target=f, args=(i,q,))
p.start()
Managers
from multiprocessing import Process, Manager def f(d, l):
d[1] = ''
d[''] = 2
d[0.25] = None
l.append(1)
print(l) if __name__ == '__main__':
with Manager() as manager:
d = manager.dict() l = manager.list(range(5))
p_list = []
for i in range(10):
p = Process(target=f, args=(d, l))
p.start()
p_list.append(p)
for res in p_list:
res.join() print(d)
print(l)
协程
协程一个标准定义:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 一个协程遇到IO操作自动切换到其它协程
greenlet
from greenlet import greenlet def test1():
print 12
gr2.switch()
print 34
gr2.switch() def test2():
print 56
gr1.switch()
print 78 gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
gevent
import gevent def foo():
print('Running in foo')
gevent.sleep(0)
print('Explicit context switch to foo again') def bar():
print('Explicit context to bar')
gevent.sleep(0)
print('Implicit context switch back to bar') gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
学习PYTHON之路, DAY 10 进程、线程、协程篇的更多相关文章
- python自动化开发学习 进程, 线程, 协程
python自动化开发学习 进程, 线程, 协程 前言 在过去单核CPU也可以执行多任务,操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换任务2,任务2执行0.01秒,在切换到任务3,这 ...
- Python并发编程系列之常用概念剖析:并行 串行 并发 同步 异步 阻塞 非阻塞 进程 线程 协程
1 引言 并发.并行.串行.同步.异步.阻塞.非阻塞.进程.线程.协程是并发编程中的常见概念,相似却也有却不尽相同,令人头痛,这一篇博文中我们来区分一下这些概念. 2 并发与并行 在解释并发与并行之前 ...
- Python 进程线程协程 GIL 闭包 与高阶函数(五)
Python 进程线程协程 GIL 闭包 与高阶函数(五) 1 GIL线程全局锁 线程全局锁(Global Interpreter Lock),即Python为了保证线程安全而采取的独立线程运行的 ...
- 多道技术 进程 线程 协程 GIL锁 同步异步 高并发的解决方案 生产者消费者模型
本文基本内容 多道技术 进程 线程 协程 并发 多线程 多进程 线程池 进程池 GIL锁 互斥锁 网络IO 同步 异步等 实现高并发的几种方式 协程:单线程实现并发 一 多道技术 产生背景 所有程序串 ...
- 进程&线程&协程
进程 一.基本概念 进程是系统资源分配的最小单位, 程序隔离的边界系统由一个个进程(程序)组成.一般情况下,包括文本区域(text region).数据区域(data region)和堆栈(stac ...
- Python学习笔记——进阶篇【第九周】———线程、进程、协程篇(队列Queue和生产者消费者模型)
Python之路,进程.线程.协程篇 本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Ev ...
- python的进程/线程/协程
1.python的多线程 多线程就是在同一时刻执行多个不同的程序,然而python中的多线程并不能真正的实现并行,这是由于cpython解释器中的GIL(全局解释器锁)捣的鬼,这把锁保证了同一时刻只有 ...
- python-socket和进程线程协程(代码展示)
socket # 一.socket # TCP服务端 import socket # 导入socket tcp_sk = socket.socket() # 实例化一个服务器对象 tcp_sk.bin ...
- 进程线程协程补充、docker-compose一键部署项目、搭建代理池、requests超时设置、认证设置、异常处理、上传文件
今日内容概要 补充:进程,线程,协程 docker-compose一键部署演示 搭建代理池 requests超时设置 requests认证设置 requests异常处理 requests上传文件 内容 ...
- python基础(16)-进程&线程&协程
进程之multiprocessing模块 Process(进程) Process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建. 介绍 初始化参数 Process([group [, t ...
随机推荐
- 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'groups)VALUES('1','hh','hh@163.com','Boss')' at line 1
mysql8.0版本 在已存在的表里插入一条数据 insert INTO api_user(id,username,email,groups)VALUES('1','hh','hh@163.com', ...
- v-charts
因为工作需要,使用v-chart也有一段时间了,期间针对配置图表也遇到了不少问题,在这里总结一下. 如何配置图表信息 echart的配置项可谓是相当的海量,能不看就不看.而v-chart对其进行了不少 ...
- oracle数据库创建用户
--4.1 创建表空间 CREATE TABLESPACE mdm_data DATAFILE 'D:\soft\Oracle\oracl\oradata\mdm_data01.dbf' SIZE 3 ...
- Git随笔 -- 初始化远程仓库
1. 新建文件夹(作为本地仓库与之远程仓库关联),进入文件夹空白处右键选择Git Bash(安装程序下载).[或者在开始菜单里找到Git Bash并打开,使用命令进入文件夹:cd 文件夹名称.] 2. ...
- 牛客OI周赛7-提高组 A 小睿睿的等式
链接:https://ac.nowcoder.com/acm/contest/371/A来源:牛客网 小睿睿在游戏开始时有n根火柴棒,他想知道能摆成形如“A+B=n”的等式且使用的火柴棒数也恰好等于n ...
- 如何对tcp流认证并加密
一个场景:目前越来越多的业务需要远程读写Redis,而Redis 本身不提供 SSL/TLS 的支持,在需要安全访问的环境下. 这时候就需要额外的手段进行加密认证,这里有两种手段:spiped 和 n ...
- Ubuntu 无界面使用selenium chrome + headless
1. 安装 selenium : sudo pip install selenium 2. 安装 chromdriver: 进入 淘宝镜像源 下载 chromdriver, 可以查看 notes.tx ...
- mfc双缓冲绘图
1.要求 在界面加载本地图片并显示,每过100ms改变一张图片显示 2.现象 通过定时器控制CImage,Load,Draw,Destroy,会非常的卡顿.因为Load图片时,会是非常大的数据[所有C ...
- flutter常规错误
https://blog.csdn.net/mo_feng_/article/details/85104013
- CF1062E Company
CF1062E Company 链接 cf luogu 题目大意 给定一颗树,有若干个询问,每个询问给出 l,r,要求编号为 ll~rr 的点任意删去一个之后剩余点的 LCA 深度最大,输出删去点的编 ...