SKlearn简介

scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。

SKlearn官网链接:http://scikit-learn.org/stable/index.html

在工程应用中,用python手写代码来从头实现一个算法的可能性非常低,这样不仅耗时耗力,还不一定能够写出构架清晰,稳定性强的模型。更多情况下,是分析采集到的数据,根据数据特征选择适合的算法,在工具包中调用算法,调整算法的参数,获取需要的信息,从而实现算法效率和效果之间的平衡。而sklearn,正是这样一个可以帮助我们高效实现算法应用的工具包。

sklearn有一个完整而丰富的官网,里面讲解了基于sklearn对所有算法的实现和简单应用。

常用模块

sklearn中常用的模块有分类、回归、聚类、降维、模型选择、预处理。

分类:识别某个对象属于哪个类别,常用的算法有:SVM(支持向量机)、nearest neighbors(最近邻)、random forest(随机森林),常见的应用有:垃圾邮件识别、图像识别。

回归:预测与对象相关联的连续值属性,常见的算法有:SVR(支持向量机)、 ridge regression(岭回归)、Lasso,常见的应用有:药物反应,预测股价。

聚类:将相似对象自动分组,常用的算法有:k-Means、 spectral clustering、mean-shift,常见的应用有:客户细分,分组实验结果。

降维:减少要考虑的随机变量的数量,常见的算法有:PCA(主成分分析)、feature selection(特征选择)、non-negative matrix factorization(非负矩阵分解),常见的应用有:可视化,提高效率。

模型选择:比较,验证,选择参数和模型,常用的模块有:grid search(网格搜索)、cross validation(交叉验证)、 metrics(度量)。它的目标是通过参数调整提高精度。

预处理:特征提取和归一化,常用的模块有:preprocessing,feature extraction,常见的应用有:把输入数据(如文本)转换为机器学习算法可用的数据。

安装SKlearn

安装最新版本

Scikit-learn需要:

  • Python(> = 2.7或> = 3.4),

  • NumPy(> = 1.8.2),

  • SciPy(> = 0.13.3)。

【注意】Scikit-learn 0.20是支持Python 2.7和Python 3.4的最后一个版本。Scikit-learn 0.21将需要Python 3.5或更高版本。

如果你已经安装了numpy和scipy,那么安装scikit-learn的最简单方法就是使用 pip或者canda

pip install -U scikit-learn
conda install scikit-learn
 

如果你尚未安装NumPy或SciPy,你也可以使用conda或pip安装它们。使用pip时,请确保使用binary wheels,并且不会从源头重新编译NumPy和SciPy,这可能在使用特定配置的操作系统和硬件(例如Raspberry Pi上的Linux)时发生。从源代码构建numpy和scipy可能很复杂(特别是在Windows上),需要仔细配置以确保它们与线性代数例程的优化实现相关联。为了方便,我们可以使用如下所述的第三方发行版本。

发行版本

如果你还没有numpy和scipy的python安装,我们建议你通过包管理器或通过python bundle安装。它们带有numpy,scipy,scikit-learn,matplotlib以及许多其他有用的科学和数据处理库。

可用选项包括:Canopy和Anaconda适用于所有支持的平台

除了用于Windows,Mac OSX和Linux的大量科学python库之外,CanopyAnaconda都提供了最新版本的scikit-learn。

Anaconda提供scikit-learn作为其免费发行的一部分。

【注意】pip和conda命令不要混用!!!

要升级或卸载scikit-learn安装了python或者conda不应该使用PIP命令

升级scikit-learnconda update scikit-learn

卸载scikit-learnconda remove scikit-learn

使用pip install -U scikit-learn安装或者使用pip uninstall scikit-learn卸载可能都没有办法更改有conda命令安装的sklearn。

算法选择

sklearn 实现了很多算法,面对这么多的算法,如何去选择呢?其实选择的主要考虑的就是需要解决的问题以及数据量的大小。sklearn官方提供了一个选择算法的引导图。

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

这里提供翻译好的中文版本,供大家参考:

机器学习入门之sklearn介绍的更多相关文章

  1. 机器学习入门KNN近邻算法(一)

    1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...

  2. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  3. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  4. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  5. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  6. 【机器学习】多项式回归sklearn实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...

  7. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  8. 机器学习入门:K-近邻算法

    机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题. ...

  9. 机器学习入门:极度舒适的GBDT原理拆解

    机器学习入门:极度舒适的GBDT拆解 本文旨用小例子+可视化的方式拆解GBDT原理中的每个步骤,使大家可以彻底理解GBDT Boosting→Gradient Boosting Boosting是集成 ...

随机推荐

  1. 快速掌握Nginx(一) —— 安装Nginx和简单配置虚拟主机

    Nginx安装和简单配置虚拟主机 1 Nginx简介 Nginx是近几年最火热的http.反向代理服务器,百度阿里等互联网公司也都在使用Nginx,它也可以用作邮件代理服务器.TCP/UDP代理服务器 ...

  2. Ubuntu16.04的图形化界面无法启动问题

    昨晚在 Ubuntu 下试图安装笔记本触控板的驱动的时候,突然 Ubuntu 的图形化界面不见了,尝试了 Ctrl + Alt + F1.F2.F3...无果,又在一些博客的指导下尝试在命令行使用 s ...

  3. Frp基础配置模版

    Frp基础配置模版存档,供参考: 不写注释说明了,直接上模板: frps.ini [common] bind_port = 7000 privilege_token = password vhost_ ...

  4. Axis2 WebService客户端Axis2调用

    第一RPC方式,不生成客户端代码 第二,document方式,不生成客户端代码 第三,用wsdl2java工具,生成客户端方式调用 package samples.quickstart.client; ...

  5. CSS之Background

    实验环境 [Windows 10] Chrome 73.0.3683.103(386,64bit) background作用范围 content+padding 参考文献 [1] CSS backgr ...

  6. 如何用ps简单快速扣头发丝

    好久不用PS抠图,今天接到一个小任务,换背景,以前一直用通道的办法,但用通道比较费劲,发现一个更简单的办法,就是用快速蒙版+调整边缘. 这张是原图: 1.先用快速蒙版制作选取(Q) 再按Q,退出快速蒙 ...

  7. centos7.2下部署 python3

    安装Python3 1.环境准备 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel read ...

  8. 第十三节,OPenCV学习(二)图像的简单几何变换

    图像的简单几何变换 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排 适当的几何变换可以最大程度地消除由于成像角度.透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响. 一.图像 ...

  9. SHOT

  10. 【转】一文掌握 Linux 性能分析之内存篇

    [转]一文掌握 Linux 性能分析之内存篇 前面我们已经学习了 CPU 篇,这篇来看下内存篇. 01 内存信息 同样在分析内存之前,我们得知到怎么查看系统内存信息,有以下几种方法. 1.1 /pro ...