【HNOI 2017】大佬
Problem
Description
人们总是难免会碰到大佬。他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语。你作为一个 OIer,面对这样的事情非常不开心,于是发表了对大佬不敬的言论。 大佬便对你开始了报复,你也不示弱,扬言要打倒大佬。现在给你讲解一下什么是大佬,大佬除了是神犇以外,还有着强大的自信心,自信程度可以被量化为一个正整数 \(C\),想要打倒一个大佬的唯一方法是摧毁 Ta 的自信心,也就是让大佬的自信值等于 \(0\)(恰好等于 \(0\),不能小于 \(0\))。由于你被大佬盯上了,所以你需要准备好 \(n\) 天来和大佬较量,因为这 \(n\) 天大佬只会嘲讽你动摇你的自信,到了第 \(n+1\) 天,如果大佬发现你还不服,就会直接虐到你服,这样你就丧失斗争的能力了。
你的自信程度同样也可以被量化,我们用 \(\mathrm{mc}\) 来表示你的自信值上限。在第 \(i \ (i\ge 1)\) 天,大佬会对你发动一次嘲讽,使你的自信值减小 \(a_i\),如果这个时刻你的自信值小于 \(0\) 了,那么你就丧失斗争能力,也就失败了(特别注意你的自信值为 \(0\) 的时候还可以继续和大佬斗争)。 在这一天,大佬对你发动嘲讽之后,如果你的自信值仍大于等于 \(0\),你能且仅能选择如下的行为之一:
还一句嘴,大佬会有点惊讶,导致大佬的自信值 \(C\) 减小 \(1\)。
做一天的水题,使得自己的当前自信值增加 \(w_i\),并将新自信值和自信值上限 \(\mathrm{mc}\) 比较,若新自信值大于 \(\mathrm{mc}\),则新自信值更新为 \(\mathrm{mc}\)。例如,\(\mathrm{mc} = 50\),当前自信值为 \(40\),若 \(w_i = 5\),则新自信值为 \(45\),若 \(w_i = 11\),则新自信值为 \(50\)。
让自己的等级值 \(L\) 加 \(1\)。
让自己的讽刺能力 \(F\) 乘以自己当前等级 \(L\),使讽刺能力 \(F\) 更新为 \(F\cdot L\)。
怼大佬,让大佬的自信值 \(C\) 减小 \(F\)。并在怼完大佬之后,你自己的等级 \(L\) 自动降为 \(0\),讽刺能力 \(F\) 降为 \(1\)。由于怼大佬比较掉人品,所以这个操作只能做不超过两次。
特别注意的是,在任何时候,你不能让大佬的自信值为负,因为自信值为负,对大佬来说意味着屈辱,而大佬但凡遇到屈辱就会进化为更厉害的大佬直接虐飞你。在第 \(1\) 天,在你被攻击之前,你的自信是满的(初始自信值等于自信值上限 \(\mathrm{mc}\)),你的讽刺能力 \(F\) 是 \(1\),等级是 \(0\)。
现在由于你得罪了大佬,你需要准备和大佬正面杠,你知道世界上一共有 \(m\) 个大佬,他们的嘲讽时间都是 \(n\) 天,而且第 \(i\) 天的嘲讽值都是 \(a_i\)。不管和哪个大佬较量,你在第 \(i\) 天做水题的自信回涨都是 \(w_i\)。这 \(m\) 个大佬中只会有一个来和你较量(\(n\) 天里都是这个大佬和你较量),但是作为你,你需要知道对于任意一个大佬,你是否能摧毁他的自信,也就是让他的自信值恰好等于 \(0\)。和某一个大佬较量时,其他大佬不会插手。
Input Format
第一行三个正整数 \(n,m,\mathrm{mc}\)。分别表示有 \(n\) 天和 \(m\) 个大佬,你的自信上限为 \(\mathrm{mc}\)。
接下来一行是用空格隔开的 \(n\) 个数,其中第 \(i(1\le i\le n)\) 个表示 \(a_i\)。
接下来一行是用空格隔开的 \(n\) 个数,其中第 \(i(1\le i\le n)\) 个表示 \(w_i\)。
接下来 \(m\) 行,每行一个正整数,其中第 \(k(1\le k\le m)\) 行的正整数 \(C_k\) 表示第 \(k\) 个大佬的初始自信值。
Output Format
共 \(m\) 行,如果能战胜第 \(k\) 个大佬(让他的自信值恰好等于 0),那么第 \(k\) 行输出 \(1\),否则输出 \(0\)。
Sample
Input
30 20 30
15 5 24 14 13 4 14 21 3 16 7 4 7 8 13 19 16 5 6 13 21 12 7 9 4 15 20 4 13 12
22 21 15 16 17 1 21 19 11 8 3 28 7 10 19 3 27 17 28 3 26 4 22 28 15 5 26 9 5 26
30
10
18
29
18
29
3
12
28
11
28
6
1
6
27
27
18
11
26
1
Output
0
1
1
0
1
0
1
1
0
0
0
1
1
1
1
1
1
0
0
1
Range
对于 \(20\%\) 的数据,\(1\le n\le 10\);
另有 \(20\%\) 数据,\(1\le C_i,n,\mathrm{mc}\le 30\);
对于 \(100\%\) 的数据,\(1\le n, \mathrm{mc}\le 100, 1\le m\le 20; 1\le a_i, w_i\le\mathrm{mc}, 1\le C_i\le 10^8\)。
Algorithm
\(DP\),广搜
Mentality
我感觉我做了一道搜索题 \(......\) 蓝瘦。而且题面也太过真实了。
我们第一个瞬间就该发现,每个大佬只有血量不同,那么我们为了打败大佬,肯定要用尽量多的时间来降低他的自信,则由于其他量都相等,我们完全可以先求出最多能用多少天来与大佬战♂斗对抗。
这个很简单,来一发 \(DP\) 就好,设 \(f[i][j]\) 为到了第 \(i\) 天剩余 \(j\) 点自信时,最多能花多少天嘲讽大佬。然后取 \(n^2\) 数组内的最大值 \(D\) 作为最大天数。
然后我们要统计如何分配怼大佬的那两次。
首先,如果大佬的自信值小于等于 \(D\) ,我们直接不停还嘴就行。
那么我们讨论一下怼大佬的情况。
先计算出我们的嘲讽能力为 \(F\) 时所需花费的最小天数 \(D\) ,求法后面再讲,它太过暴力了 \(emm...\) 。
我们考虑枚举两次怼大佬时的嘲讽能力 \(F1,F2\) ,显然在相同 \(F\) 值的情况下花在准备上的时间要越少越好,我们设两者的时间为 \(D1,D2\)。
那么我们这两次怼大佬必定要满足两个条件:不能把大佬怼死了;剩下的时间通过还嘴可以刚好打败大佬。
转化成不等式如下:
\]
那我们只需要枚举一个 \(F1\) ,在这种情况下,\(F1,D1\) 都已经固定了,我们可以找到一个满足第一个不等式的,具有最优性的 \(F2\) ,也即 \(F2-D2\) 在满足第一个不等式的条件下最小,那么这时我们计算 \(F1+F2+(D-D1-D2)\) 是否大于等于 \(C\) ,如果大于则此次询问答案为 \(YES\) ,如果枚举遍所有的 \(F1\) 都无法满足第二个不等式那答案就为 \(NO\) 。
所以我们可以把所有计算出来的状态按 \(F\) 排序,然后从大到小枚举 \(F1\) ,而 \(F2\) 的寻找范围也是单调递增的,那么我们扫 \(F2\) 的指针沿用上次的即可。
那么重点来了,怎么计算状态呢?答案是 -- 广搜 \(......\)
我们只需要带着三个数值所代表的状态 \(dfs\) 即可,分别是 \(step\) -- 使用 \(step\) 天,\(L\) -- 当前等级,\(F\) -- 当前嘲讽能力。然后直接广搜肯定是不行的,我们来观察一下:由于在相同的 \(F\) 下,所花天数越小越好。而由于我们使用的是广搜,所以当我们搜索到一个新状态 \(step,L,F\) 时,相对于当前的 \(L,F\) ,\(step\) 就肯定是最优天数了。所以我们只需要使用哈希表判重,如果后面再搜到相同的 \(L,F\) ,那就不加入搜索队列了。
暴力否?
如若不懂详见代码。
为了卡常长得蛮奇怪。
Code
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <queue>
using namespace std;
#define f(i) STA[i].first
#define d(i) STA[i].second
const int mod = 9e5 + 1;
int n, m, limit, maxx, cnt, C, a[101], w[101], c[21];
int f[101][101], D;
inline void read(int &x) {
x = 0;
char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
}
pair<int, int> STA[1000001];
struct node {
int L, F, t;
};
struct Check {
int x[mod], y[mod], nx[mod], head[mod], cnt;
int get_key(int X, int Y) { return (998244ll * X + Y) % mod; }
inline void add(int X, int Y) {
int now = get_key(X, Y);
cnt++;
nx[cnt] = head[now], x[cnt] = X, y[cnt] = Y;
head[now] = cnt;
}
inline bool query(int X, int Y) {
int now = get_key(X, Y);
for (register int i = head[now]; i; i = nx[i])
if (X == x[i] && Y == y[i]) return true;
return false;
}
} Map, M;
inline void Max(int &a, int b) { a = a < b ? b : a; }
queue<node> q;
inline void bfs() {
q.push((node){0, 1, 1});
while (!q.empty()) {
node now = q.front();
q.pop();
if (now.t == D) continue;
q.push((node){now.L + 1, now.F, now.t + 1});
if (now.L > 1 && 1ll * now.L * now.F <= maxx &&
!Map.query(now.L * now.F, now.L)) //手写 Map 判重
{
int A = now.L * now.F, B = now.t + 1;
q.push((node){now.L, A, B});
if (!M.query(A, 9181283))
STA[++cnt] = make_pair(A, B),
M.add(A, 9181283); //相同 F 下所花天数越少越好
Map.add(A, now.L);
}
}
}
int main() {
read(n), read(m), read(limit);
for (register int i = 1; i <= n; i++) read(a[i]);
for (register int i = 1; i <= n; i++) read(w[i]);
for (register int i = 1; i <= m; i++)
read(c[i]), Max(maxx, c[i]); //先处理出搜索的上限 -- F
//值至少不能大于自信值最强的大佬的自信吧
for (register int i = 1; i <= n; i++)
for (register int j = a[i]; j <= limit; j++)
Max(f[i][j - a[i]], f[i - 1][j] + 1),
Max(f[i][min(limit, j - a[i] + w[i])],
f[i - 1][j]); //先 DP 出最大天数
for (register int i = 1; i <= n; i++)
for (register int j = 1; j <= limit; j++) Max(D, f[i][j]); //取 max
bfs(); //开始广搜
sort(STA + 1, STA + cnt + 1);
for (register int i = 1; i <= m; i++) {
if (c[i] <= D) {
printf("1\n");
continue;
}
int mmax = -1e9, Ans = 0;
for (register int l = 1, r = cnt; r; r--) {
while (f(l) + f(r) <= c[i] && l < cnt)
Max(mmax, f(l) - d(l)), l++; //移动
if (f(r) + D - d(r) + mmax >= c[i]) Ans = 1; //是否满足第二个不等式
if (f(r) <= c[i] && f(r) + D - d(r) >= c[i]) Ans = 1;
}
printf("%d\n", Ans);
}
}
【HNOI 2017】大佬的更多相关文章
- [HNOI 2017]大佬
Description 题库链接 题意简述来自Gypsophila. 你现在要怼 \(m\) 个大佬,第 \(i\) 个大佬的自信值是 \(C_i\) .每次怼大佬之前,你的自信值是 \(mc\),等 ...
- [HNOI 2017]单旋
Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的 ...
- [HNOI 2017]抛硬币
Description 题库链接 两人抛硬币一人 \(a\) 次,一人 \(b\) 次.记正面朝上多的为胜.问抛出 \(a\) 次的人胜出的方案数. \(1\le a,b\le 10^{15},b\l ...
- [HNOI 2017]影魔
Description 题库链接 给你一段长度为 \(n\) 的序列 \(K\) . \(m\) 组询问,每次给定左右端点 \(l,r\) .求出满足区间内下述贡献和. 如果一个区间的两个端点是这一个 ...
- [HNOI 2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- 【HNOI 2017】影魔
Problem Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还 ...
- HNOI 2017
题目链接 我还是按bzoj AC数量排序做的 4827 这个其实如果推一下(求每个值)式子会发现是个卷积,然后FFT就好了 4826 记不太清了,可以求出每个点左右第一个比他的的点的位置,将点对看成平 ...
- 【HNOI 2017】礼物
Problem Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物 ...
- AH/HNOI 2017 礼物
题目链接 描述 两个序列 \(x, y\),可以将一个序列每个值同时加非负整数 \(c\),其中一个序列可以循环移位,要求最小化: \[\sum_{i = 1}^{n}(x_i - y_i) ^ 2 ...
随机推荐
- 小程序开发 easy-less 配置
开发支付宝小程序, 不习惯直接写css 了,推动小程序的开发太低效,讲道理默认构建就应该支持less 和sass. vscode 有easy-less 插件,看下配置支持自定义扩展名. { &quo ...
- 支持向量机(SVM)
SVM 简介 SVM:Support Vector Machine , 支持向量机, 是一种分类算法. 同Logistic 分类方法目的一样,SVM 试图想寻找分割线或面,将平面或空间里的样本点一分为 ...
- Python3学习之路~8.5 SocketServer实现多并发
前面几节我们写的socket都只能实现服务端与一个客户端通信,并不能实现服务端与多客户端同时通信.接下来我们就来学习一下如何实现服务端同时与多个客户端通信,即并发. Socket Server soc ...
- stm32定时器输出移相PWM(非主从模式)
背景:由于项目需要,需要stm32输出任意相角度的PWM 前提知识: 1.stm32定时器的Tim,一般有多个OC.具体差别根据型号来定. 2.定时器的使能,理论上是多个通道同时使能 3.TIM_OC ...
- mysql获取连接connection失败
好久不写jdbc了,今天写了个小东西,数据库连接失败,错误信息如下: java.sql.SQLException: The server time zone value '???ú±ê×??±??' ...
- [virtualbox] win10与centos共享目录下,nginx访问问题
原文,http://blog.csdn.net/zhezhebie/article/details/73554872 virtualbox自动挂载之后,默认是挂载在/media/sf_WWW下面的: ...
- ubuntu window 10 双系统
https://rufus.ie/ U盘制作工具 http://releases.ubuntu.com/18.04/ubuntu-18.04.2-desktop-amd64.iso ubuntu ...
- 堆叠式降噪自动编码器(SDA)
1.1 自动编码器 自动编码器(AutoEncoder,AE)就是一种尽可能复现输入信号的神经网络,其输出向量与输入向量同维,常按照输入向量的某种形式,通过隐层学习一个数据的表示或对原始数据进行有效 ...
- 支付宝 ILLEGAL_SIGN
支付宝 ILLEGAL_SIGN: 解决办法:地址加上 <![CDATA[ ...... ]]> <PAY_COMPLETE_PAGE_URL><![CDATA[http ...
- 第01节:ActiveMQ入门和消息中间件
1.ActiveMQ最主要的功能:实现JMS Provider,用来帮助实现高可用.高性能.可伸缩.易用和安全的企业级面向消息服务的系统.是一个异步的功能. 2.ActiveMQ特点: 完全支持JMS ...