关于系统环境:

  • Ubuntu 16.04 LTS
  • cuda 8.0
  • cudnn 6.5
  • Anaconda3

编译pycaffe之前需要配置文件Makefile.config

 ## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV :=
# USE_LEVELDB :=
# USE_LMDB := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
# OPENCV_VERSION := # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2. \
# /usr/lib/python2./dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := /home/ipc/anaconda3
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python3.6m \
# $(ANACONDA_HOME)/lib/python3./site-packages/numpy/core/include
# 关键点1:根据自己的情况设置好ANACONDA的路径
# Uncomment to use Python (default is Python )
PYTHON_LIBRARIES := boost_python3 python3.6m
PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python3.6m $(ANACONDA_HOME)/lib/python3./site-packages/numpy/core/include
# 关键点2:需要注意其中的版本号,原始文件是3.5的,但是我的anaconda是3.6的,因此如果直接uncomment,就会出现问题,需要根据自己的情况设置好
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include /usr/local/cuda/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/local/cuda/lib64 # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @
  1. 如上方式配置文件Makefile.config(路径问题)

    • 可避免Python.h 和 numpy/arrayobject.h文件找不到的问题
  2. cannot find -lboost_python3的问题(版本问题)(参考 http://blog.csdn.net/u012675539/article/details/51351553)
    • 检查是否有文件存在:ls /usr/lib/x86_64-linux-gnu/libboost_python-py35.so
    • 建立软链接:sudo ln -s libboost_python-py35.so libboost_python3.so
  3. libstdc++.so.6: version 'GLIBCXX_3.4.20' not found的问题 (版本问题)
    • conda install libgcc(conda不能也无需使用sudo)
  4. No module named 'google'的问题 (版本问题)
    • conda install protobuf
  5. 以sudo用户(如sudoxxx)进行安装,其他用户(如otherxxx)进行运行
    • sudo chown otherxxx caffe(权限问题)
    • .bashrc修改环境变量:最后面加入export PYTHONPATH=(你的caffe/python路径,如/home/otherxxx/caffe/python):$PYTHONPATH

上述即为在安装pycaffe过程中所踩过的坑!

安装python caffe过程中遇到的一些问题以及对应的解决方案的更多相关文章

  1. centos7安装Python3的过程中会和Python2.7版本冲突导致yum版本比对应,致使yum不能使用的问题。

    centos7安装Python3的过程中会和Python2.7版本冲突导致yum版本比对应,致使yum不能使用的问题. 原因:yum调用Python,启动程/usr/bin/yum就是一个python ...

  2. 在学习python的过程中,遇到的最大的困难是什么?

    本人文科生,回顾自己近 2 年的Python 自学经历,有一些学习心得和避坑经验分享给大家,让大家在学习 Python 的过程中少走一些弯路!减少遇到不必要的学习困难! 首先,最开始最大的困难应该就是 ...

  3. (转)CloudStack 安装及使用过程中常见问题汇总

    CloudStack 安装及使用过程中常见问题汇总             在做工程项目中对CloudStack 安装及使用过程中常见的几个问题及如何解决做一个总结.   1.Windows XP虚拟 ...

  4. MySQL安装过程中对The error code is 2203的解决方案

    MySQL安装过程中对The error code is 2203的解决方案 1.问题描述 Windows系统安装MySQL遇到The error code is 2203.,具体描述如下 The i ...

  5. VS·调试过程中某个操作导致调试突然退出之解决方案

    阅文时长 | 0.11分钟 字数统计 | 232字符 主要内容 | 1.引言&背景 2.声明与参考资料 『VS·调试过程中某个操作导致调试突然退出之解决方案』 编写人 | SCscHero 编 ...

  6. Windows安装部署Tensorflow过程中的问题处理

    1 在配置Tensorflow过程中有一行命令是 python object_detection/builders/model_builder_test.py 过程中出现了 NameError: na ...

  7. python 笔记1:安装python;eclipse中安装配置pydev

    1  下载安装python. 官网:https://www.python.org/downloads/     根据自己的操作系统选择需要的版本下载并安装. 我的电脑操作系统windows xp的,只 ...

  8. Office2007在安装、卸载过程中出错的解决办法

    Micorsoft office professional plus 2007在安装过程中出错,错误1706 如果在安装OFFICE 2007的 时候,遇到“Microsoft Office 2007 ...

  9. Python 爬虫过程中的中文乱码问题

    python+mongodb 在爬虫的过程中,抓到一个中文字段,encode和decode都无法正确显示 注:以下print均是在mongodb中截图显示的,在pythonshell中可能会有所不同 ...

随机推荐

  1. MongoDB副本集功能及节点属性梳理

    副本集的主要功能 副本集是MongoDB高可用的基础,其主要作用 归纳为以下几点: (1)高可用,防止设备(服务器.网络)故障.提供自动FailOver功能. (2)无需配置高可用性虚拟节点:无论是S ...

  2. 《常见排序算法--PHP实现》

    原文地址: 本文地址:http://www.cnblogs.com/aiweixiao/p/8202360.html Original 2018-01-02 关注 微信公众号 程序员的文娱情怀 1.概 ...

  3. Linux上修改主机名

    依次执行以下命令 hostnamectl set-hostname 你想设置的名字 hostname 你想设置的名字(和上面的名字保持一致) exit 然后重新连接就行了

  4. 【Git】+安装+使用+配置

    Git安装及使用: https://www.cnblogs.com/ximiaomiao/p/7140456.html Git下载地址: http://git-scm.com/download/win ...

  5. IDEA+API && SPI

    JAVA中API和SPI的区别:https://blog.csdn.net/quanaianzj/article/details/82500019

  6. AI 强化学习

    强化学习(reinforcement learning,简称RL), agent policy state action 目标  最大化累计reward 参考链接: https://en.wikipe ...

  7. Lightoj 1128 - Greatest Parent

    Gate 倍增模板,在一个严格小根堆中,给定$x,y$,求$x$的祖先中$≥y$的最高点. 注意清零 #include<cstdio> #include<iostream> # ...

  8. go笔记-值传递、引用传递

    eg: func sliceModify(slice []int) { // slice[0] = 88 slice = append(slice, ) } func main() { slice : ...

  9. 3.HttpSession

    1 HttpSession概述 1.1 什么是HttpSesssion javax.servlet.http.HttpSession接口表示一个会话,我们可以把一个会话内需要共享的数据保存到HttSe ...

  10. Golang 入门 : 数组

    数组是指一系列同一类型数据的集合.数组中包含的每个数据被称为数组元素(element),这种类型可以是任意的原始类型,比如 int.string 等,也可以是用户自定义的类型.一个数组包含的元素个数被 ...