[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.
证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\sex{{\bf y}\times\cfrac{\p {\bf v}}{\p t}}\rd x,\\ \int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t&=\int_{S_t} ({\bf y}\times {\bf T}{\bf \nu})\rd S_t\\ &=\int_{S_0} ({\bf y}\times {\bf P}{\bf n})\rd S_0,\\ \int_{G_t}\rho({\bf y}\times{\bf b})\rd y&=\int_{G_0} \rho_0({\bf y}\times{\bf b})\rd x \eea \eeex$$ 知 $$\bex \int_{G_0}\rho_0{\bf y}\times\sex{\cfrac{\p{\bf v}}{\p t}-{\bf b}}\rd x =\int_{S_0}({\bf y}\times{\bf P}{\bf n})\rd S_0. \eex$$ 由动量矩守恒定律 (3. 43) 知 $$\bex {\bf I}\equiv \int_{G_0} {\bf y}\times \Div_x{\bf P}\rd x =\int_{S_0} ({\bf y}\times{\bf P}{\bf n})\rd S_0\equiv {\bf J}. \eex$$ 写成分量形式为 $$\beex \bea I_i&=\int_{G_0} \sum_{j,k,l}\ve_{ijk} y_j\cfrac{\p P_{kl}}{\p x_l}\rd x,\\ J_i&=\int_{S_0}\sum_{j,k}\ve_{ijk}y_j({\bf P}{\bf n})_k\rd S_0\\ &=\int_{S_0}\sum_{j,k,l} \ve_{ijk} y_jP_{kl}n_l\rd S_0\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} \cfrac{\p}{\p x_l}(y_jP_{kl})\rd x\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} f_{jl}P_{kl}+y_j\cfrac{\p p_{kl}}{\p x_l}\rd x. \eea \eeex$$ 于是 $$\bex \sum_{j,k,l}\ve_{ijk}f_{jl}P_{kl}=0. \eex$$ 分别取 $i=1,2,3$ 有 $$\beex \bea \sum_l (f_{2l}P_{3l}-f_{3l}P_{2l})&=0,\\ \sum_l (f_{3l}P_{1l}-f_{1l}P_{3l})&=0,\\ \sum_l (f_{1l}P_{2l}-f_{2l}P_{1l})&=0. \eea \eeex$$ 此即 $$\bex ({\bf F}{\bf P}^T)_{23}=({\bf F}{\bf P}^T)_{32},\quad ({\bf F}{\bf P}^T)_{31}=({\bf F}{\bf P}^T)_{13},\quad ({\bf F}{\bf P}^T)_{12}=({\bf F}{\bf P}^T)_{21}; \eex$$ 或等价地, $$\beex \bea ({\bf F}{\bf P}^T)^T&={\bf F}{\bf P}^T,\\ {\bf P}{\bf F}^T&={\bf F}{\bf P}^T,\\ {\bf P}&={\bf F}{\bf P}^T{\bf F}^{-T},\\ {\bf F}^{-1}{\bf P}&=({\bf F}^{-1}{\bf P})^T,\\ {\bf \Sigma}&={\bf \Sigma}^T. \eea \eeex$$
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性的更多相关文章
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第1章习题5 偶极子的电场强度
试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...
- [物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...
随机推荐
- 英语进阶系列-A04-英语升级练习二
古诗背诵 要求:背诵和朗读,然后翻译成现代文,并绘制图像描述图中的内容,同时看看某些内容可以用什么单词替换,时间限制到15 minutes. 速记词汇系列 要求:将词汇快速朗读并记忆,时间为8 min ...
- 爬虫系列----scrapy爬取网页初始
一 基本流程 创建工程,工程名称为(cmd):firstblood: scrapy startproject firstblood 进入工程目录中(cmd):cd :./firstblood 创建爬虫 ...
- Extending the Yahoo! Streaming Benchmark
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...
- 在windows下远程访问linux桌面
一.安装xrdp工具: # yum install xrdp # yum install tigervnc-server # service xrdp start 以上三个命令执行完毕安装完 ...
- 使用opencv进行简单的手势检测[by Python]
代码参考于:https://github.com/rainyear/lolita/issues/8 简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB ...
- day5-python的文件操作-坚持就好
目录摘要 文件处理 1.文件初识 2.文件的读操作 3.文件的写操作 4.文件的追加操作 5.文件的其他操作 6.文件的修改 正式开始 文件处理:写了这么多代码了,有的时候我们执行完成的结果想永久保存 ...
- 第五章:Realm
一,UserRealm 1,UserRealm父类AuthorizingRealm将获取Subject相关信息分成两步: 1.1,获取身份验证信息(doGetAuthenticationInfo): ...
- ARC089E GraphXY 构造
传送门 在Luogu上评了"NOI"之后评级变成了"普及+/提高"--我觉得我可能要退群了 考虑构造一个这样的图: 其中上半部分是从\(S\)开始的一条长\(1 ...
- 二十八、layui的日历组件使用
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- (hdu) 4857 逃生 (拓扑排序+优先队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 Problem Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄 ...