目录

1 问题描述

2 解决方案

2.1 动态规划法

 


1 问题描述

在n*m格木板中放有一些硬币,每格的硬币数目最多为一个,在木板左上方的一个机器人需要收集尽可能多的硬币并把它们带到右下方的单元格。每一步,机器人可以从当前的位置向右移动一格或向下移动一格。当机器人遇到一个有硬币的单元格时,就会将这枚硬币收集起来。设计一个算法找出机器人能找到的最大硬币数并给出相应的路径。


2 解决方案

2.1 动态规划法

本文编码思想参考自《算法设计与分析基础》第三版,具体如下:

具体代码如下:

package com.liuzhen.chapter8;

public class RobotCoinCollection {
//输出找到最大硬币数的路径
public void getMaxPath(int[][] A){
int rowA = A.length;
int columnA = A[0].length;
//在数组A最上面一行添加一行元素0,在最左边一列添加一列元素0
int[][] changeA = new int[rowA+1][columnA+1]; //初始化,各个元素均为0
int[][] maxA = new int[rowA+1][columnA+1]; //用于计算从A[0][0]到达各元素位置收集到的最大硬币数
for(int i = 0;i < rowA;i++){
for(int j = 0;j < columnA;j++)
changeA[i+1][j+1] = A[i][j];
}
for(int i = 1;i <= rowA;i++){
for(int j = 1; j <= columnA;j++){
if(maxA[i-1][j] >= maxA[i][j-1])
maxA[i][j] = maxA[i-1][j] + changeA[i][j];
else
maxA[i][j] = maxA[i][j-1] + changeA[i][j];
}
} //输出各个元素位置收集到的最大硬币数
System.out.println("各个元素位置收集到的最大硬币数:");
for(int i = 1;i <= rowA;i++){
for(int j = 1;j <= columnA;j++)
System.out.print(maxA[i][j]+"\t");
System.out.println();
} System.out.println("从左上方到右下方收集到最大硬币数的路径(PS:其中元素为-1 表示行走路径):");
maxA[1][1] = 1; //最左上方位置
maxA[rowA][columnA] = -1; //最右下方位置
int maxI = rowA;
int maxJ = columnA;
while(maxI >= 1 && maxJ >= 1){
if(maxA[maxI][maxJ-1] >= maxA[maxI-1][maxJ]){
maxA[maxI][maxJ-1] = -1;
maxJ = maxJ - 1;
}
else{
maxA[maxI-1][maxJ] = -1;
maxI = maxI - 1;
}
} for(int i = 1;i <= rowA;i++){
for(int j = 1;j <= columnA;j++)
System.out.print(maxA[i][j]+"\t");
System.out.println();
} } public static void main(String[] args){
RobotCoinCollection test = new RobotCoinCollection();
int[][] A ={{0,0,0,0,1,0},
{0,1,0,1,0,0},
{0,0,0,1,0,1},
{0,0,1,0,0,1},
{1,0,0,0,1,0}};
test.getMaxPath(A);
}
}

运行结果:

各个元素位置收集到的最大硬币数:
0 0 0 0 1 1
0 1 1 2 2 2
0 1 1 3 3 4
0 1 2 3 3 5
1 1 2 3 4 5
从左上方到右下方收集到最大硬币数的路径(PS:其中元素为-1 表示行走路径):
-1 0 0 0 1 1
-1 -1 -1 -1 2 2
0 1 1 -1 -1 -1
0 1 2 3 3 -1
1 1 2 3 4 -1

参考资料:

1.《算法设计与分析基础》 第3版      Anany Levitin 著  潘彦 译

算法笔记_050:硬币收集问题(Java)的更多相关文章

  1. 算法笔记_023:拓扑排序(Java)

    目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进 ...

  2. 算法笔记_228:信用卡号校验(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 当你输入信用卡号码的时候,有没有担心输错了而造成损失呢?其实可以不必这么担心,因为并不是一个随便的信用卡号码都是合法的,它必须通过Luhn算法来验证 ...

  3. 算法笔记_138:稳定婚姻问题(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为稳定婚姻问题? 有一个男士的集合Y = {m1,m2,m3...,mn}和一个女士的计划X = {n1,n2,n3,...,nn}.每一个男士有 ...

  4. 算法笔记_137:二分图的最大匹配(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为二分图的最大匹配问题? 引用自百度百科: 首先得说明一下何为匹配: 给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于 ...

  5. 算法笔记_132:最大流量问题(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为最大流量问题? 给定一个有向图,并为每一个顶点设定编号为0~n,现在求取从顶点0(PS:也可以称为源点)到顶点n(PS:也可以称为汇点)后,顶点 ...

  6. 算法笔记_040:二进制幂(Java)

    目录 1 问题描述 2 解决方案 2.1 从左至右二进制幂 2.2 从右至左二进制幂   1 问题描述 使用n的二进制表示,计算a的n次方. 2 解决方案 2.1 从左至右二进制幂 此方法计算a的n次 ...

  7. 算法笔记_014:合并排序(Java)

    1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...

  8. 算法笔记_233:二阶魔方旋转(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 魔方可以对它的6个面自由旋转. 我们来操作一个2阶魔方(如图1所示): 为了描述方便,我们为它建立了坐标系. 各个面的初始状态如下:x轴正向:绿x轴 ...

  9. 算法笔记_227:填写乘法算式(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 观察下面的算式: * * × * * = * * * 它表示:两个两位数字相乘,结果是3位数.其中的星号(*)代表任意的数字,可以相同,也可以不同, ...

随机推荐

  1. shell脚本报错退出

    在shell脚本中,比如有以下的代码: cd /root/test88 rm -rf  backup 如果目录/root/test88不存在,脚本不会停止,依然会执行rm -rf backup这个命令 ...

  2. EXISTS运算符

    和IN.ANY.ALL等运算符不同,EXISTS运算符是单目运算符,它不与列匹配,因此它也不要求待匹配的集合是单列的.EXISTS运算符用来检查每一行是否匹配子查询,可以认为EXISTS就是用来测试子 ...

  3. BZOJ 1109 [POI2007]堆积木Klo(树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1109 [题目大意] Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体. ...

  4. 【贪心】【堆】Gym - 101128C - Canvas Painting

    一些画布,每块有其大小,一开始都是白的,你任意将它们排序,然后一次操作可以选择一段连续的相同颜色的画布,从中任选一个位置,左侧涂上任意一种颜色,右侧涂上另一种.消耗是这一段画布的总的大小.问你要将所有 ...

  5. Java学习笔记(15)

    iterator方法 迭代器的作用:就是用于抓取集合中的元素 注:迭代器返回的一个接口类型的实现类,是一种多态的用法,而不是接口在调用方法 public class Demo2 { public st ...

  6. [转] Spring@Autowired注解与自动装配

    1   配置文件的方法 我们编写spring 框架的代码时候.一直遵循是这样一个规则:所有在spring中注入的bean 都建议定义成私有的域变量.并且要配套写上 get 和 set方法. Boss ...

  7. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  8. Unity 加密解密

    解密无非就为了 修改游戏功能数据.提取游戏资源.加入自己想加的广告...加密就是保护游戏不被恶意修改,经常看到有人说:"加什么密,你以为自己写的代码很NB?见不得人?"我只想说,加 ...

  9. python的globals()使用

    使用命令pyrasite-shell pid,可以与进程进行shell交互,获取,在shell里执行globals(),可以获取整个进程的全部全局变量,比如django应用.flask应用的变量,而不 ...

  10. iOS:使用block代码块实现事件处理过程中的回调

    block是什么,这里就不多加强调了,它的优点: 第一:执行效率高,速度快 第二:使用起来比代理简单,省却不少代码,增强代码美感 有一些小的知识点要强调一下: 第一点:它类似于一个匿名函数,也跟jav ...