Remmarguts' Date
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 30772   Accepted: 8397

Description

"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story.

"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."

"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"

Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!

DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.

The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14

边可以重复走,
不严格的k短路
A*
估价函数为dis(起点,i)+dis(i,终点) 1、反向图上求出终点到每个点的最短路
2、起点入优先队列,
  队首出队,
  如果队首是终点,而且是第k次出队,
那么当前距离就是k短路
如果队首不是终点,便利与当前点连接的所有的点,入队 细节1:优先队列出入队不用vis数组判重,因为边可以重复走
细节2:如果第1步中,起点与终点不连通,输出-1结束,
    否则进入A*,没有vis数组,出现环会死循环
细节3:如果起点=终点,令k++,因为起点会立即出队
#include<queue>
#include<cstdio>
#include<cstring>
#define N 1001
#define M 100001
using namespace std;
int n,s,t,k;
int dis1[N];
bool vis[N];
int front[N],to[M],nxt[M],val[M],tot;
int front2[N],to2[M],nxt2[M],val2[M],tot2;
struct node
{
int num,dis;
bool operator < (node p) const
{
return dis+dis1[num]>p.dis+dis1[p.num];
}
}now,nt;
void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
to2[++tot2]=u; nxt2[tot2]=front2[v]; front2[v]=tot2; val2[tot2]=w;
}
void init()
{
int m,u,v,w;
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
scanf("%d%d%d",&s,&t,&k);
}
void spfa()
{
memset(dis1,,sizeof(dis1));
queue<int>q;
dis1[t]=;
vis[t]=true;
q.push(t);
int now;
while(!q.empty())
{
now=q.front();
q.pop();
vis[now]=false;
for(int i=front2[now];i;i=nxt2[i])
if(dis1[to2[i]]>dis1[now]+val2[i])
{
dis1[to2[i]]=dis1[now]+val2[i];
if(!vis[to2[i]])
{
q.push(to2[i]);
vis[to2[i]]=true;
}
}
}
}
void Astar()
{
if(dis1[s]>1e9)
{
printf("-1");
return;
}
if(s==t) k++;
int cnt=,last=-;
priority_queue<node>q;
now.num=s;
now.dis=;
q.push(now);
while(!q.empty())
{
now=q.top();
q.pop();
if(now.num==t)
{
cnt++;
if(cnt==k)
{
printf("%d",now.dis);
return;
}
}
for(int i=front[now.num];i;i=nxt[i])
{
nt.num=to[i];
nt.dis=now.dis+val[i];
q.push(nt);
}
}
printf("-1");
}
int main()
{
init();
spfa();
Astar();
}
												

poj 2449 Remmarguts' Date (k短路模板)的更多相关文章

  1. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  2. POJ 2449 Remmarguts' Date (K短路 A*算法)

    题目链接 Description "Good man never makes girls wait or breaks an appointment!" said the mand ...

  3. POJ 2449 Remmarguts' Date --K短路

    题意就是要求第K短的路的长度(S->T). 对于K短路,朴素想法是bfs,使用优先队列从源点s进行bfs,当第K次遍历到T的时候,就是K短路的长度. 但是这种方法效率太低,会扩展出很多状态,所以 ...

  4. [poj2449]Remmarguts' Date(K短路模板题,A*算法)

    解题关键:k短路模板题,A*算法解决. #include<cstdio> #include<cstring> #include<algorithm> #includ ...

  5. K短路模板POJ 2449 Remmarguts' Date

      Time Limit: 4000MS   Memory Limit: 65536K Total Submissions:32863   Accepted: 8953 Description &qu ...

  6. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  7. POJ 2449Remmarguts' Date K短路模板 SPFA+A*

    K短路模板,A*+SPFA求K短路.A*中h的求法为在反图中做SPFA,求出到T点的最短路,极为估价函数h(这里不再是估价,而是准确值),然后跑A*,从S点开始(此时为最短路),然后把与S点能达到的点 ...

  8. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  9. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

随机推荐

  1. ZOJ 3689 Digging(DP)

    Description When it comes to the Maya Civilization, we can quickly remind of a term called the end o ...

  2. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  3. Java版office文档在线预览

    java将office文档pdf文档转换成swf文件在线预览 第一步,安装openoffice.org openoffice.org是一套sun的开源office办公套件,能在widows,linux ...

  4. spring框架(2)— 面相切面编程AOP

    spring框架(2)— 面相切面编程AOP AOP(Aspect Oriented Programming),即面向切面编程. 可以说是OOP(Object Oriented Programming ...

  5. js 拼接字符串时,本来想要’#1′ ,返回的却是’#01′

    今天在操作一个元素时,id值是拼接的. var index = $(this).attr(‘index’);    //0var id = ‘#’ + (index+1);    //#01$(id) ...

  6. lintcode-179-更新二进制位

    179-更新二进制位 给出两个32位的整数N和M,以及两个二进制位的位置i和j.写一个方法来使得N中的第i到j位等于M(M会是N中从第i为开始到第j位的子串) 注意事项 In the function ...

  7. printf以及各种变种

    int printf(char *format, [argument]); 其向终端(显示器.控制台等)输出字符 int fprintf(FILE*stream, const char*format, ...

  8. C# 反射与dynamic最佳组合

    在 C# 中反射技术应用广泛,至于什么是反射.........你如果不了解的话,请看下段说明,否则请跳过下段.广告一下:喜欢我文章的朋友请关注一下我的blog,这也有助于提高本人写作的动力. 反射:当 ...

  9. AngularJS 学习笔记--01

    学习 AngularJS 要先了解 MVC 模式 , 即 " 模型--视图--控制器 " . 模型: 包含了需要用到的数据 ; 有两种广义上的模型 : 视图模型 , 只表示从控制器 ...

  10. 学习 SQL 语句 - Select(9): 其他

    //只要前五条记录 procedure TForm1.Button1Click(Sender: TObject); begin   with ADODataSet1 do begin     Clos ...