题目大意:
  有n(n为偶数)张牌,每张牌正反面有两张数字,你可以从中选出n/2张牌,减去某一面的数字,再选出另外n/2张牌,加上某一面的数字,问最终的答案最小能是多少?

思路:
  先不考虑n/2的限制,考虑每张牌的最优情况——加上较小值,减去较大值。
  对每张牌记录一下两种情况的差值,以及加的个数和减的个数。
  看一下是不是刚好n/2,如果不是,就加上那些差值。
  注意两种情况的差值是要分开记录的,一开始没想清楚,只用了一个堆来维护,只能拿50分。

 #include<stack>
#include<vector>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int B=;
struct Point {
int x,y;
bool operator < (const Point &another) const {
if(y==another.y) return x>another.x;
return y<another.y;
}
};
std::vector<Point> a,p;
std::stack<int> q;
int l[B],r[B];
inline int calc(const int &x,const int &y) {
if(!x) return ;
return (int64)(y*-std::min(x,y))*(std::min(x,y)-)/;
}
int main() {
int n=getint(),m=getint(),b=getint();
for(register int i=;i<=b;i++) {
const int x=getint(),y=getint();
a.push_back((Point){x,y});
}
std::sort(a.begin(),a.end());
int64 ans=;
for(register int i=;i<=n;i++) {
p.clear();
p.push_back((Point){i,});
for(register unsigned j=;j<a.size();j++) {
if(a[j].x<=i) {
p.push_back(a[j]);
}
}
p.push_back((Point){i,m+});
while(!q.empty()) q.pop();
q.push();
for(register unsigned i=;i<p.size();i++) {
while(q.size()>&&p[q.top()].x<=p[i].x) q.pop();
l[i]=q.top();
q.push(i);
}
while(!q.empty()) q.pop();
q.push(p.size()-);
for(register unsigned i=p.size()-;i>;i--) {
while(q.size()>&&p[q.top()].x<p[i].x) q.pop();
r[i]=q.top();
q.push(i);
}
for(register unsigned j=;j<p.size();j++) {
ans+=calc(i,p[j].y-p[j-].y-);
}
for(register unsigned j=;j<p.size()-;j++) {
ans+=calc(i-p[j].x,p[r[j]].y-p[l[j]].y-)-calc(i-p[j].x,p[r[j]].y-p[j].y-)-calc(i-p[j].x,p[j].y-p[l[j]].y-);
}
}
printf("%lld\n",ans);
return ;
}

[SimpleOJ239]Cards的更多相关文章

  1. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  2. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  4. codeforces 744C Hongcow Buys a Deck of Cards

    C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...

  5. CF 204B Little Elephant and Cards

    题目链接: 传送门 Little Elephant and Cards time limit per test:2 second     memory limit per test:256 megab ...

  6. HDU 1535 Invitation Cards(最短路 spfa)

    题目链接: 传送门 Invitation Cards Time Limit: 5000MS     Memory Limit: 32768 K Description In the age of te ...

  7. Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组

    E. George and Cards   George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...

  8. 队列 Soldier and Cards

    Soldier and Cards 题目: Description Two bored soldiers are playing card war. Their card deck consists ...

  9. [CareerCup] 18.2 Shuffle Cards 洗牌

    18.2 Write a method to shuffle a deck of cards. It must be a perfect shuffle—in other words, each of ...

随机推荐

  1. Quartz的Properties文件解析

    将可变信息放在properties文件是使配置更加灵活. 1.文档位置和加载顺序 1. StdSchedulerFactory默认加载quartz包下的quartz.properties文件,如果我们 ...

  2. 通过实例来学习XML DTD

    使用DTD的原因: 注意:由于它自身的一些缺点,DTD终将被淘汰,但是它还是要学习的.学习完DTD后,后面继续学习XML Schema. 1,通过 DTD,您的每一个 XML 文件均可携带一个有关其自 ...

  3. Fiddler抓取HTTPS协议

    HTTPS协议握手过程: 1,客户端明文请求,把自己支持的非对称加密算法(用于使用CA证书公钥加密计算生成协商密钥的随机数per_master).对称加密算法(用于以后使用协商密钥加密传输内容).验证 ...

  4. 直观理解js自执行函数

    要在函数体后面加括号就能立即调用,则这个函数必须是函数表达式,不能是函数声明: Jslint推荐的写法: (function(){alert(1);}()); 针对函数声明,使用().!.+.-.=. ...

  5. (十八)Linux开机启动管理---systemd使用

    常用命令 使某服务自动启动 systemctl enable httpd.service 使某服务不自动启动 systemctl disable httpd.service 检查服务状态 system ...

  6. SQL中char、nchar、varchar、nvarchar、text概述【转】

    1. char char是定长的,也就是当你输入的字符小于你指定的数目时,char(8),你输入的字符小于8时,它会再后面补空值.当你输入的字符大于指定的数时,它会截取超出的字符. 2. nchar ...

  7. spring boot&&cloud干货系列

    接触spring boot也有些时日了,刚开始博主还想参照官方参考指南自己写一个系列的入门式的教程,包含spring boot的所有模块的用法,后来发现,有一大波优秀的系列文章和项目了,所以就没班门弄 ...

  8. JVM核心机制(类加载器、三种类加载器、代理加载模式、双亲委派机制

  9. Leetcode 之Longest Valid Parentheses(39)

    有一定的难度.用堆栈记录下所有左符的位置,用变量记录下孤立右符的位置. int longestValidParentheses(const string& s) { stack<int& ...

  10. linux命令(3):rpm命令

    查询当前环境是否已安装软件包,如下命令: [root@cloud ~]# rpm -qa | grep httpd httpd-2.4.6-31.el7.centos.1.x86_64 httpd-t ...