从大到小排序,相邻两项作差,求gcd,如果K是gcd的倍数并且K<=max{a(i)},必然有解,否则无解。

可以自己手画画证明。

#include<cstdio>
#include<algorithm>
using namespace std;
int n,K,a[100010];
int main(){
scanf("%d%d",&n,&K);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
}
if(n==1){
if(K==a[1]){
puts("POSSIBLE");
}
else{
puts("IMPOSSIBLE");
}
return 0;
}
sort(a+1,a+n+1);
int GCD=a[1];
for(int i=2;i<=n;++i){
GCD=__gcd(GCD,a[i]-a[i-1]);
}
if(K<=a[n] && K%GCD==0){
puts("POSSIBLE");
}
else{
puts("IMPOSSIBLE");
}
return 0;
}

【GCD】AtCoder Grand Contest 018 A - Getting Difference的更多相关文章

  1. 【贪心】【堆】AtCoder Grand Contest 018 C - Coins

    只有两维的时候,我们显然要按照Ai-Bi排序,然后贪心选取. 现在,也将人按照Ai-Bi从小到大排序,一定存在一个整数K,左侧的K个人中,一定有Y个人取银币,K-Y个人取铜币: 右侧的X+Y+Z-K个 ...

  2. 【贪心】AtCoder Grand Contest 018 B - Sports Festival

    假设我们一开始选取所有的运动项目,然后每一轮将当前选择人数最多的运动项目从我们当前的项目集合中删除,尝试更新答案.容易发现只有这样答案才可能变优,如果不动当前选取人数最多的项目,答案就不可能变优. 我 ...

  3. 【agc019f】AtCoder Grand Contest 019 F - Yes or No

    题意 有n个问题答案为YES,m个问题答案为NO. 你只知道剩下的问题的答案分布情况. 问回答完N+M个问题,最优策略下的期望正确数. 解法 首先确定最优策略, 对于\(n<m\)的情况,肯定回 ...

  4. 【agc013d】AtCoder Grand Contest 013 D - Piling Up

    题意 盒子里有n块砖,每块的颜色可能为蓝色或红色. 执行m次三步操作: 1.从盒子里随便拿走一块砖 2.放入一块蓝砖和红砖到盒子里 3.从盒子里随便拿走一块砖 给定n,m 问拿出来的砖,可能有多少种不 ...

  5. AtCoder Grand Contest 018 A - Getting Difference

    A - Getting Difference Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement ...

  6. 【AtCoder】AtCoder Grand Contest 035 解题报告

    点此进入比赛 \(A\):XOR Circle(点此看题面) 大致题意: 给你\(n\)个数,问是否能将它们摆成一个环,使得环上每个位置都是其相邻两个位置上值的异或值. 先不考虑\(0\),我们假设环 ...

  7. 【AtCoder】AtCoder Grand Contest 040 解题报告

    点此进入比赛 \(A\):><(点此看题面) 大致题意: 给你一个长度为\(n-1\).由\(<\)和\(>\)组成的的字符串,第\(i\)位的字符表示第\(i\)个数和第\( ...

  8. 【AtCoder】AtCoder Grand Contest 039 解题报告

    点此进入比赛 \(A\):Connection and Disconnection(点此看题面) 大致题意: 给你一个字符串,将它重复\(k\)次.进行尽量少的操作,每次修改一个位置上的字符,使得不存 ...

  9. AtCoder Grand Contest 018 A

    A - Getting Difference Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB 配点 : 300 点 問題文 箱に N 個のボールが入 ...

随机推荐

  1. 01背包问题的延伸即变形 (dp)

    对于普通的01背包问题,如果修改限制条件的大小,让数据范围比较大的话,比如相比较重量而言,价值的范围比较小,我们可以试着修改dp的对象,之前的dp针对不同的重量限制计算最大的价值.这次用dp针对不同的 ...

  2. js_一个简单的30分钟循环倒计时

    吐槽段: 需求的变更是千变万化的,至少在你说服和你打交道的那位谁谁谁之前. 创业公司就是这样,产品经理一个想法,就是改改改,管你改起来复杂不复杂,在他们眼里都是非常简单的. 今天的一个小改动需求,把活 ...

  3. 大话Spring Cloud

    研究了一段时间Spring Boot了准备向Spring Cloud进发,公司架构和项目也全面拥抱了Spring Cloud.在使用了一段时间后发现Spring Cloud从技术架构上降低了对大型系统 ...

  4. 【DLL】动态库的创建,隐式加载和显式加载(转)

    原文转自:https://blog.csdn.net/dcrmg/article/details/53437913

  5. mysql之安装和配置(一)

    环境 oracle linux7.3 数据库:MySQL-5.7.20 mysql的安装 先安装依赖的插件 yum install libaio 去官网下载mysql-5.7.20的tar.gz包: ...

  6. 利用keepalive+mysql replication 实现数据库的高可用

    利用keepalive+mysql replication 实现数据库的高可用 http://www.xuchanggang.cn/archives/866.html

  7. vue 同页面不同参数

    项目:详情页中有一个模块为更多产品,点击也是跳转到详情页,也就是相同路由,不同参数. 试过的方法:用this.$router.push,并没有任何反应,没有任何请求,页面也未重新加载,用this.$e ...

  8. 高性能网络服务器--I/O复用 select poll epoll_wait之间的区别

    一.select select采用的是集合的方式,最多只能访问1024个套接字.可读,可写,异常,三种访问,并且采用的是轮训的方式进行每次访问都需要从内核向用户空间拷贝 二.poll poll采用的是 ...

  9. Maximum Gap——桶排序

    Given an unsorted array, find the maximum difference between the successive elements in its sorted f ...

  10. CSAPP lab1 datalab-handout(深入了解计算机系统 实验一)

    主要涉及计算机中数的表示法: (1)整数: two's complement,即补码表示法 假设用N位bit表示整数w: 其中最左边一位为符号位,符号位为0,表示正数,为1表示负数. (2)浮点数: ...