http://blog.csdn.net/libin56842/article/details/9908199

树形背包:

首先是建树,每个结构体为一个节点,包括下一个点序号,值,和next。

tree[ptr]会保存所有的节点序列,而head数组则是保存每个节点的最后一个子节点序列中的位置,next则是保存上一个子节点在序列中的位置,若没有则为-1。

遍历时从i=head[root]出发,到i=-1结束,不断往子节点遍历,同一层之间用next遍历,就可以遍历树的所有节点。

树状dp。由于求的是最多多少用户,那么我们可以把用户个数当成一个状态。dp[i][j]代表i节点为根节点的子树j个用户的时候最大剩余费用。

     则dp[i][j] = max(dp[i][j], dp[i][k]+dp[son][j-k]-w[i][son]);

注意两点,第一点是上面式子中的dp[i][k]必须先用一个tem[MAX]数组提取出来,因为在计算的过程中会相互影响。第二点是价值可能是负值,所以dp初始化的时候要初始化为负的最大值。

#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <cctype>
#include <vector>
#include <iterator>
#include <set>
#include <map>
#include <sstream>
using namespace std; #define mem(a,b) memset(a,b,sizeof(a))
#define pf printf
#define sf scanf
#define spf sprintf
#define pb push_back
#define debug printf("!\n")
#define MAXN 1010
#define MAX(a,b) a>b?a:b
#define blank pf("\n")
#define LL long long
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pqueue priority_queue
#define INF 0x3f3f3f3f int n,m; struct node
{
int y,val,next;
}tree[]; int head[],dp[][],num[],tem[],ptr=; void add(int x,int y,int val)
{
tree[ptr].y = y;
tree[ptr].val = val;
tree[ptr].next = head[x];
head[x] = ptr++;
} void dfs(int root)
{
int i,j,k;
for(i=head[root]; i!=-; i=tree[i].next)
{
int p = tree[i].y;
dfs(p); for(j=;j<=num[root];j++)
tem[j] = dp[root][j]; for(j=;j<=num[root];j++)
{
for(k=;k<=num[p];k++)
{
dp[root][k+j] = max(dp[root][j+k],tem[j]+dp[p][k]-tree[i].val);
//pf("%d %d %d %d\n",root,j,k,dp[root][j+k]);
}
}
num[root]+=num[p];
}
} int main()
{
int i,j,k,a,b;
while(~sf("%d%d",&n,&m) && m+n)
{
mem(head,-);
for(i=;i<=n-m;i++)
{
sf("%d",&k);
num[i] = ;
for(j=;j<k;j++)
{
sf("%d%d",&a,&b);
add(i,a,b);
}
}
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
dp[i][j] = -;
} for(i=n-m+;i<=n;i++)
{
num[i] = ;
sf("%d",&dp[i][]);
}
dfs();
for(i=m;i>=;i--)
{
if(dp[][i]>=)
{
pf("%d\n",i);
break;
}
}
}
return ;
}

poj 1155 树形背包的更多相关文章

  1. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  2. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  3. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  4. POJ 1155 树形DP

    题意:电视台发送信号给很多用户,每个用户有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 转自:http://www.cnblogs.com/andre050 ...

  5. POJ 1155-TELE(树形背包)

    题意:电视台发送信号给很多用户,每个用户(叶子节点)有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 分析:问题与以i为根节点的子树所包含的叶子数 #incl ...

  6. poj 1947 树形背包 (删边)

    http://blog.csdn.net/woshi250hua/article/details/7632785 这道题我一开始想的dp[i][j],i是节点,j是删除的点数,dp是最少删边的个数,然 ...

  7. poj 1947 树形背包

    重做这道题 http://blog.csdn.net/woshi250hua/article/details/7632785 http://blog.csdn.net/shuangde800/arti ...

  8. POJ 2486 树形背包DP Apple Tree

    设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...

  9. UVa 1407 树形背包 Caves

    这道题可以和POJ 2486 树形背包DP Apple Tree比较着来做. 参考题解 #include <iostream> #include <cstdio> #inclu ...

随机推荐

  1. 从哈希结构去理解PHP数组

    php的数组实际上就是hash_table,无论是 数字索引数组array(1, 2, 3) 还是关联数组array(1 => 2, 2=> 4)等等. 一,这里的hash_table有几 ...

  2. [ActionScript 3.0] 利用InteractivePNG.as类精确选择识别png图片有像素的区域

    用法:如果是把png直接导入flash转换成影片剪辑,只需在影片剪辑属性中勾选为ActionScript导出(x),并把基类里的flash.display.MovieClip替换成Interactiv ...

  3. Objective-C中的meta-class

    讨论Objective-C的一个奇怪的概念 meta-class 在Objective-C中的每个类,都有它自己相关的meta-class,但因为你很少直接使用meta-class,所以显得很神秘.  ...

  4. centos下部署NFS

        一. NFS简介   NFS---Network File System:主要功能是通过网络让不同的linux主机系统间可以彼此共享文件和目录.NFS客户端可以通过挂载的方式将NFS服务器端共 ...

  5. ARC初步介绍

    [转载自 http://onevcat.com/2012/06/arc-hand-by-hand/] 手把手教你ARC——iOS/Mac开发ARC入门和使用 Revolution of Objecti ...

  6. ubuntu->错误

    1.dpkg *** locked 原因:安装某个包不成功, 可以使用命令 dpkg --configure -a 来重启中断的安装过程 如果屡次安装不成功放弃安装,则删除 lock 2.flashp ...

  7. Jmeter Grafana Influxdb 环境搭建

    1.软件安装 1.Grafana安装 本文仅涉及Centos环境 新建Grafana yum源文件 /etc/yum.repos.d/grafana.repo [grafana] name=grafa ...

  8. [原创]markdown语法学习(commonmark)

    CommonMark是markdown的解析器,以下是部分学习链接: commonmark规范 https://spec.commonmark.org/ commonmark帮助 https://co ...

  9. vue源码-检查对象是否全相等

    /** * Check if two values are loosely equal - that is, * if they are plain objects, do they have the ...

  10. 4G模块在AM335x上的移植

    关于4G模块的移植  看到一个很实用的写的比较好的   借鉴一下 参考:https://e2echina.ti.com/question_answer/dsp_arm/sitara_arm/f/25/ ...