poj 1155 树形背包
http://blog.csdn.net/libin56842/article/details/9908199
树形背包:
首先是建树,每个结构体为一个节点,包括下一个点序号,值,和next。
tree[ptr]会保存所有的节点序列,而head数组则是保存每个节点的最后一个子节点在序列中的位置,next则是保存上一个子节点在序列中的位置,若没有则为-1。
遍历时从i=head[root]出发,到i=-1结束,不断往子节点遍历,同一层之间用next遍历,就可以遍历树的所有节点。
树状dp。由于求的是最多多少用户,那么我们可以把用户个数当成一个状态。dp[i][j]代表i节点为根节点的子树j个用户的时候最大剩余费用。
则dp[i][j] = max(dp[i][j], dp[i][k]+dp[son][j-k]-w[i][son]);
注意两点,第一点是上面式子中的dp[i][k]必须先用一个tem[MAX]数组提取出来,因为在计算的过程中会相互影响。第二点是价值可能是负值,所以dp初始化的时候要初始化为负的最大值。
#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <cctype>
#include <vector>
#include <iterator>
#include <set>
#include <map>
#include <sstream>
using namespace std; #define mem(a,b) memset(a,b,sizeof(a))
#define pf printf
#define sf scanf
#define spf sprintf
#define pb push_back
#define debug printf("!\n")
#define MAXN 1010
#define MAX(a,b) a>b?a:b
#define blank pf("\n")
#define LL long long
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pqueue priority_queue
#define INF 0x3f3f3f3f int n,m; struct node
{
int y,val,next;
}tree[]; int head[],dp[][],num[],tem[],ptr=; void add(int x,int y,int val)
{
tree[ptr].y = y;
tree[ptr].val = val;
tree[ptr].next = head[x];
head[x] = ptr++;
} void dfs(int root)
{
int i,j,k;
for(i=head[root]; i!=-; i=tree[i].next)
{
int p = tree[i].y;
dfs(p); for(j=;j<=num[root];j++)
tem[j] = dp[root][j]; for(j=;j<=num[root];j++)
{
for(k=;k<=num[p];k++)
{
dp[root][k+j] = max(dp[root][j+k],tem[j]+dp[p][k]-tree[i].val);
//pf("%d %d %d %d\n",root,j,k,dp[root][j+k]);
}
}
num[root]+=num[p];
}
} int main()
{
int i,j,k,a,b;
while(~sf("%d%d",&n,&m) && m+n)
{
mem(head,-);
for(i=;i<=n-m;i++)
{
sf("%d",&k);
num[i] = ;
for(j=;j<k;j++)
{
sf("%d%d",&a,&b);
add(i,a,b);
}
}
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
dp[i][j] = -;
} for(i=n-m+;i<=n;i++)
{
num[i] = ;
sf("%d",&dp[i][]);
}
dfs();
for(i=m;i>=;i--)
{
if(dp[][i]>=)
{
pf("%d\n",i);
break;
}
}
}
return ;
}
poj 1155 树形背包的更多相关文章
- POJ 1155 树形背包(DP) TELE
题目链接: POJ 1155 TELE 分析: 用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理. dp[cnt][i+j] = max( dp[cnt][i+j ...
- POJ 1155 (树形DP+背包+优化)
题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...
- POJ 1155 TELE 背包型树形DP 经典题
由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...
- POJ 1155 树形DP
题意:电视台发送信号给很多用户,每个用户有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 转自:http://www.cnblogs.com/andre050 ...
- POJ 1155-TELE(树形背包)
题意:电视台发送信号给很多用户,每个用户(叶子节点)有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 分析:问题与以i为根节点的子树所包含的叶子数 #incl ...
- poj 1947 树形背包 (删边)
http://blog.csdn.net/woshi250hua/article/details/7632785 这道题我一开始想的dp[i][j],i是节点,j是删除的点数,dp是最少删边的个数,然 ...
- poj 1947 树形背包
重做这道题 http://blog.csdn.net/woshi250hua/article/details/7632785 http://blog.csdn.net/shuangde800/arti ...
- POJ 2486 树形背包DP Apple Tree
设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...
- UVa 1407 树形背包 Caves
这道题可以和POJ 2486 树形背包DP Apple Tree比较着来做. 参考题解 #include <iostream> #include <cstdio> #inclu ...
随机推荐
- BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)
传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...
- weex 编译vue成js
cd 项目 1.开发 npm run web 开发过程中可以直接使用浏览器运行 npm run ios 2.打包 npm run build 会在 dist 文件夹 中生成js文件, 即可拖入ios ...
- Android Fragment原理及应用
1.Fragment简介 Fragment(片段) 表示 Activity 中的行为或用户界面部分.您可以将多个片段组合在一个 Activity 中来构建多窗格 UI,以及在多个 Activity 中 ...
- python全栈开发_day7_字符编码,以及文件的基本读取
一:字符编码 1)什么是字符编码 将人能识别的字符等高级标识符与计算机所能识别的二进制01进行转化,这之间的交流需要一个媒介,进行两种标识符之间的转化. 字节的存储方式为八个二进制位 2)乱码 存放数 ...
- HTML5获取地理经纬度并通过百度接口得到实时位置
注:用的时候将获取北京位置那放到获取经度纬度后面即可 -----------实际用的时候的代码如下:start -------- var myCity;getLocation()function g ...
- IONIC 打包安卓apk详细过程
参照以下链接: https://blog.csdn.net/qq_20264891/article/details/79319408 当 cordova 项目安装的 android 平台版本 与 系统 ...
- 解决eclipse下tomcat启动超时
- 002-BootStrap基本模板
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...
- 局域网电脑之间ping不通解决办法
局域网电脑之间ping不通一般都是防火墙的原因.解决办法有以下两种方法 1 第一种方法 1 找到Windows防火墙 2点击更改通知设置 3 关闭专用网络防火墙 现在就可以ping通这台机器了. 2 ...
- FocusBI:SSAS体系结构(原创)
关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. SSAS是微软BI组件系列中最核心的组件,商业智能的心脏所有的数据都从这里统一输出,它能把 ...