具体可以去跪《浅谈用极大化思想解决最大子矩形问题》(p.s. 蒟蒻跪了还是很晕,不过想到之前usaco好像是最后一章的一道题……看了下代码顿然醒悟)

也就是如果用o(nm)的方法维护一个极大矩阵?其实很简单,按行处理,维护u[],l[],r[](向上,向左,向右)每一行先预处理处理出这行中每一个点向右能延展多长(right[j]),向左能延展多长(left[j]),然后再开始处理这一行的点,具体做法是比较这个点(i,j)与上行同一列的点(i-1,j)是否可以连在一起,可以的话,那么u[j]++,l[j]=min(left[j],l[j]),r[j]:=min(right[j],r[j]),如果不可以,那么u[j]=1,l[j]=left[j],r[j]=right[j]。记住u[],l[],r[]的作用,他们表示一个如果以这一行为底边,那么包括进j点的最大矩形的形状u[j]*(r[j]+l[j]-1)。然后好像就是这样了吧。

var
map,f:array[..,..]of longint;
left,right,u,l,r:array[..]of longint;
i,j,k,n,m,ans:longint; function min(x,y:longint):longint;
begin
if x>y then exit(y);
exit(x);
end; function max(x,y:longint):longint;
begin
if x>y then exit(x);
exit(y);
end; procedure work1;
var
i,j,k:longint;
begin
ans:=;
for i:= to n do
for j:= to m do begin
if (i=)or(j=) then begin
f[i,j]:=;
continue;
end;
if (map[i-][j]=map[i][j])
or (map[i,j-]=map[i,j])
or (map[i-,j-]<>map[i][j]) then begin
f[i,j]:=;
continue;
end;
f[i,j]:=min(f[i-][j],min(f[i,j-],f[i-,j-]))+;
if f[i,j]>ans then ans:=f[i,j];
end;
writeln(ans*ans);
end; procedure work2;
var
i,j,k:longint;
begin
ans:=;
for i:= to n do begin
left[]:=;
right[m]:=;
for j:= to m do
if map[i,j-]<>map[i,j] then left[j]:=left[j-]+ else left[j]:=;
for j:=m- downto do
if map[i,j+]<>map[i,j] then right[j]:=right[j+]+ else right[j]:=;
for j:= to m do begin
if i= then begin
u[j]:=;
l[j]:=left[j];
r[j]:=right[j];
end
else
if map[i-,j]<>map[i,j] then begin
inc(u[j]);
l[j]:=min(l[j],left[j]);
r[j]:=min(r[j],right[j]);
end
else begin
u[j]:=;
l[j]:=left[j];
r[j]:=right[j];
end;
ans:=max(ans,(r[j]+l[j]-)*u[j]);
end;
end;
writeln(ans);
end; begin
readln(n,m);
for i:= to n do
for j:= to m do
read(map[i,j]);
work1;
work2;
end.

p.s. 其实看了丽洁姐的代码,发现自己真是傻掉了,两问明明是可以并在一起求得嘛,(r[j]+l[j]-1)、u[j]不就是矩形的长和高,那么两者中肯定存在一个短边构成的正方形……

【以前的空间】bzoj [ZJOI2007]棋盘制作的更多相关文章

  1. bzoj 1057: [ZJOI2007]棋盘制作 单调栈

    题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 1019[Submit] ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  3. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  4. 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...

  5. BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)

    [ZJOI2007]棋盘制作                                          时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...

  6. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  7. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  8. BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 1848  Solved: 936 [Submit][Sta ...

  9. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

随机推荐

  1. AOSP 设置编译输出目录

    export OUT_DIR=/media/caoxinyu/TomasYu/out 注意:export OUT_DIR= OUT_DIR 后面直接跟= ,不要有空格.否则报错.

  2. 「LeetCode」0001-Two Sum(Ruby)

    题意与分析 题意直接给出来了:给定一个数,返回数组中和为该数(下为\(x\))的两个数的下标. 这里有一个显然的\(O(n)\)的实现:建立一个hash表,每次读入数(记作\(p\))的时候查询has ...

  3. idea前端页面不刷新----springboot

    修改这里就好了

  4. unity实现框选效果

    思路: 在uinity中既可以将屏幕坐标转换为世界坐标,也可以将世界坐标转换为屏幕坐标.这样的话我们就可以通过判断物体在世界坐标转换为平幕坐标是否在鼠标框选的矩形区域坐标内,来判断物体是否在框选范围. ...

  5. [JSON].result()

    语法:[JSON].result() 返回:[True | False] 说明:用json字符串创建JSON实例时,如果该json字符串不是合法的json格式,会创建一个空的json实例.但是我们如果 ...

  6. Java基础知识:Java实现Map集合二级联动1

    Java实现Map集合二级联动 Map集合可以保存键值映射关系,这非常适合本实例所需要的数据结构,所有省份信息可以保存为Map集合的键,而每个键可以保存对应的城市信息,本实例就是利用Map集合实现了省 ...

  7. 利用AWS的EC2实例配合Putty访问Google账户

    首先,我们需要一个amazon的帐号,该帐号可以开始AWS服务,第一次使用时需要绑定信用卡并扣1美元,然后再退还到我们的卡中,就是要验证一下信用卡帐户的有效性哦.有了这个帐号就可以尽情地享受AWS提供 ...

  8. Sharepoint 2013与Sharepoint 2016的功能对比

    开发人员功能 SharePoint Foundation 2013 SharePoint Server 2013 Standard CAL SharePoint Server 2013 Enterpr ...

  9. Rightmost Digit(最后一位数字)

    Description Given a positive integer N, you should output the most right digit of N^N.    Input The ...

  10. Thunder团队第二周 - Scrum会议5

    Scrum会议5 小组名称:Thunder 项目名称:爱阅app Scrum Master:苗威 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康 ...