之前的文章《更高的压缩比,更好的性能–使用ORC文件格式优化Hive》中介绍了Hive的ORC文件格式,它不但有着很高的压缩比,节省存储和计算资源之外,还通过一个内置的轻量级索引,提升查询的性能。这个内置的轻量级索引,就是下面所说的Row Group Index。

其实ORC支持的索引不止这一种,还有一种BloomFilter索引,两者结合起来,更加提升了Hive中基于ORC的查询性能。

说明一下:本文使用Hive2.0.0 + hadoop-2.3.0-cdh5.0.0作为测试环境。表lxw1234_text为text格式保存,总记录数为12000920。

Row Group Index

由之前的文章知道,一个ORC文件包含一个或多个stripes(groups of row data),每个stripe中包含了每个columnmin/max值的索引数据,当查询中有<,>,=的操作时,会根据min/max值,跳过扫描不包含的stripes

而其中为每个stripe建立的包含min/max值的索引,就称为Row Group Index,也叫min-max Index,或者Storage Index。在建立ORC格式表时,指定表参数’orc.create.index’=’true’之后,便会建立Row Group Index,需要注意的是,为了使Row Group Index有效利用,向表中加载数据时,必须对需要使用索引的字段进行排序,否则,min/max会失去意义。另外,这种索引通常用于数值型字段的查询过滤优化上。

看下面的例子:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. 'orc.bloom.filter.fpp'='0.05',
  6. 'orc.stripe.size'='10485760',
  7. 'orc.row.index.stride'='10000')
  8. AS
  9. SELECT CAST(siteid AS INT) AS id,
  10. pcid
  11. FROM lxw1234_text
  12. DISTRIBUTE BY id sort BY id;

直接执行下面的查询(未使用索引):

  1. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

很明显,扫描了所有记录。再使用索引查询:

  1. set hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

可以看到,只扫描了部分记录,即根据Row Group Index中的min/max跳过了WHERE条件中不包含的stripes,索引有效果。

假如有下面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');

执行的过程大概是这样的:

先根据Row Group Index中的min/max,判断哪些stripes/file包含在内,接着逐行扫描,过滤pcid IN (‘0005E26F0DCCDB56F9041C’,’A’)的记录。

可以看到,没有全表扫描,跳过了一部分stripes。这样看来,如果where后面的id范围很大,完全可能会包含所有的文件,再根据pcid过滤时候,又相当于全表扫描了。

对于这种查询场景的优化策略,就是下面的BloomFilter索引。

Bloom Filter Index

之前有篇文章《大数据去重统计之BloomFilter》,介绍过BloomFilter的原理和Java版的例子。Hive的ORC中基于此,提供了BloomFilter索引,用于性能优化。

在建表时候,通过表参数”orc.bloom.filter.columns”=”pcid”来指定为那些字段建立BloomFilter索引,这样,在生成数据的时候,会在每个stripe中,为该字段建立BloomFilter的数据结构,当查询条件中包含对该字段的=号过滤时候,先从BloomFilter中获取以下是否包含该值,如果不包含,则跳过该stripe.

看下面的建表语句,为pcid字段建立BloomFilter索引:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. "orc.bloom.filter.columns"="pcid",
  6. 'orc.bloom.filter.fpp'='0.05',
  7. 'orc.stripe.size'='10485760',
  8. 'orc.row.index.stride'='10000')
  9. AS
  10. SELECT CAST(siteid AS INT) AS id,
  11. pcid
  12. FROM lxw1234_text
  13. DISTRIBUTE BY id sort BY id;

然后执行上面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');


您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。

通过Row Group Index和Bloom Filter Index的双重索引优化,这条语句最终执行,只扫描了60000条记录,大大节省了MapTask的执行时间和资源。

之前的文章《更高的压缩比,更好的性能–使用ORC文件格式优化Hive》中介绍了Hive的ORC文件格式,它不但有着很高的压缩比,节省存储和计算资源之外,还通过一个内置的轻量级索引,提升查询的性能。这个内置的轻量级索引,就是下面所说的Row Group Index。

其实ORC支持的索引不止这一种,还有一种BloomFilter索引,两者结合起来,更加提升了Hive中基于ORC的查询性能。

说明一下:本文使用Hive2.0.0 + hadoop-2.3.0-cdh5.0.0作为测试环境。表lxw1234_text为text格式保存,总记录数为12000920。

Row Group Index

由之前的文章知道,一个ORC文件包含一个或多个stripes(groups of row data),每个stripe中包含了每个columnmin/max值的索引数据,当查询中有<,>,=的操作时,会根据min/max值,跳过扫描不包含的stripes

而其中为每个stripe建立的包含min/max值的索引,就称为Row Group Index,也叫min-max Index,或者Storage Index。在建立ORC格式表时,指定表参数’orc.create.index’=’true’之后,便会建立Row Group Index,需要注意的是,为了使Row Group Index有效利用,向表中加载数据时,必须对需要使用索引的字段进行排序,否则,min/max会失去意义。另外,这种索引通常用于数值型字段的查询过滤优化上。

看下面的例子:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. 'orc.bloom.filter.fpp'='0.05',
  6. 'orc.stripe.size'='10485760',
  7. 'orc.row.index.stride'='10000')
  8. AS
  9. SELECT CAST(siteid AS INT) AS id,
  10. pcid
  11. FROM lxw1234_text
  12. DISTRIBUTE BY id sort BY id;

直接执行下面的查询(未使用索引):

  1. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

很明显,扫描了所有记录。再使用索引查询:

  1. set hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

可以看到,只扫描了部分记录,即根据Row Group Index中的min/max跳过了WHERE条件中不包含的stripes,索引有效果。

假如有下面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');

执行的过程大概是这样的:

先根据Row Group Index中的min/max,判断哪些stripes/file包含在内,接着逐行扫描,过滤pcid IN (‘0005E26F0DCCDB56F9041C’,’A’)的记录。

可以看到,没有全表扫描,跳过了一部分stripes。这样看来,如果where后面的id范围很大,完全可能会包含所有的文件,再根据pcid过滤时候,又相当于全表扫描了。

对于这种查询场景的优化策略,就是下面的BloomFilter索引。

Bloom Filter Index

之前有篇文章《大数据去重统计之BloomFilter》,介绍过BloomFilter的原理和Java版的例子。Hive的ORC中基于此,提供了BloomFilter索引,用于性能优化。

在建表时候,通过表参数”orc.bloom.filter.columns”=”pcid”来指定为那些字段建立BloomFilter索引,这样,在生成数据的时候,会在每个stripe中,为该字段建立BloomFilter的数据结构,当查询条件中包含对该字段的=号过滤时候,先从BloomFilter中获取以下是否包含该值,如果不包含,则跳过该stripe.

看下面的建表语句,为pcid字段建立BloomFilter索引:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. "orc.bloom.filter.columns"="pcid",
  6. 'orc.bloom.filter.fpp'='0.05',
  7. 'orc.stripe.size'='10485760',
  8. 'orc.row.index.stride'='10000')
  9. AS
  10. SELECT CAST(siteid AS INT) AS id,
  11. pcid
  12. FROM lxw1234_text
  13. DISTRIBUTE BY id sort BY id;

然后执行上面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');


您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。

通过Row Group Index和Bloom Filter Index的双重索引优化,这条语句最终执行,只扫描了60000条记录,大大节省了MapTask的执行时间和资源。

转:Hive性能优化之ORC索引–Row Group Index vs Bloom Filter Index的更多相关文章

  1. Hive性能优化

    1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...

  2. Hive性能优化上的一些总结

    https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...

  3. MySQL性能优化(三):索引

    原文:MySQL性能优化(三):索引 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbi ...

  4. Hive性能优化(全面)

    1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 ...

  5. SqlServer性能优化 查询和索引优化(十二)

    查询优化的过程: 查询优化: 功能:分析语句后最终生成执行计划 分析:获取操作语句参数 索引选择 Join算法选择 创建测试的表: select * into EmployeeOp from Adve ...

  6. 数据库性能优化:SQL索引

    SQL索引在数据库优化中占有一个非常大的比例, 一个好的索引的设计,可以让你的效率提高几十甚至几百倍,在这里将带你一步步揭开他的神秘面纱. 1.1 什么是索引? SQL索引有两种,聚集索引和非聚集索引 ...

  7. SQL Server 性能优化之——重复索引

    原文 http://www.cnblogs.com/BoyceYang/archive/2013/06/16/3139006.html 阅读导航 1. 概述 2. 什么是重复索引 3. 查找重复索引 ...

  8. MySQL性能优化,MySQL索引优化,order by优化,explain优化

    前言 今天我们来讲讲如何优化MySQL的性能,主要从索引方面优化.下期文章讲讲MySQL慢查询日志,我们是依据慢查询日志来判断哪条SQL语句有问题,然后在进行优化,敬请期待MySQL慢查询日志篇 建表 ...

  9. 性能优化之mysql索引优化

    sql及索引优化 如何通过慢查询日志发现有问题的sql? 查询次数多且每次查询占用时间长的sql通常为pt-query-digest分析的前几个查询 IO大的sql注意pt-query-digest分 ...

随机推荐

  1. python创建一个线程和一个线程池

    创建一个线程 1.示例代码 import time import threading def task(arg): time.sleep(2) while True: num = input('> ...

  2. 从微观到宏观,遍历网络安全这幅有向图——By Me

    “可视化”是网络安全领域的前沿技术与可靠保障.笔者所在的西电捷通是一家领先的网络安全基础技术国际研究机构.一直从事网络安全基础技术研发与技术转移.笔者在2011年底入职典型技术之上的西电捷通公司,那时 ...

  3. java 多线程 day03 线程同步

    package com.czbk.thread; /** * Created by chengtao on 17/12/3. 线程安全问题: 线程安全出现 的根本原因: 1. 存在两个或者两个以上 的 ...

  4. 4 TensorFlow入门之dropout解决overfitting问题

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  5. delphi连接sql server的字符串2011-10-11 16:07

    delphi连接sql server的字符串2011-10-11 16:07 一.delphi连接sql server 放一个连接组件 ADOConnection, 其它组件TADODataSet,T ...

  6. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  7. hive--udf函数(开发-4种加载方式)

    UDF函数开发 标准函数(UDF):以一行数据中的一列或者多列数据作为参数然后返回解雇欧式一个值的函数,同样也可以返回一个复杂的对象,例如array,map,struct. 聚合函数(UDAF):接受 ...

  8. springboot-vue项目后台2---pojo对查询结果手动分组

    <resultMap id="PResult" type="packs" > <result column="device_type ...

  9. 介绍Web项目中用到的几款JS日历日期控件和JS文本编辑框插件

    第一款日历日期控件:layDate 官方网站:http://laydate.layui.com/ 第二款日历日期控件:my97 官方网站:http://www.my97.net/ 第三款 文本编辑器控 ...

  10. 20145235李涛《网络对抗》Exp2 后门原理与实践

    Windows获得Linux Shell Linux获得windows shell 实验内容 使用netcat获取主机操作shell,cron启动 使用socat获取主机shell,任务计划启动 使用 ...