之前的文章《更高的压缩比,更好的性能–使用ORC文件格式优化Hive》中介绍了Hive的ORC文件格式,它不但有着很高的压缩比,节省存储和计算资源之外,还通过一个内置的轻量级索引,提升查询的性能。这个内置的轻量级索引,就是下面所说的Row Group Index。

其实ORC支持的索引不止这一种,还有一种BloomFilter索引,两者结合起来,更加提升了Hive中基于ORC的查询性能。

说明一下:本文使用Hive2.0.0 + hadoop-2.3.0-cdh5.0.0作为测试环境。表lxw1234_text为text格式保存,总记录数为12000920。

Row Group Index

由之前的文章知道,一个ORC文件包含一个或多个stripes(groups of row data),每个stripe中包含了每个columnmin/max值的索引数据,当查询中有<,>,=的操作时,会根据min/max值,跳过扫描不包含的stripes

而其中为每个stripe建立的包含min/max值的索引,就称为Row Group Index,也叫min-max Index,或者Storage Index。在建立ORC格式表时,指定表参数’orc.create.index’=’true’之后,便会建立Row Group Index,需要注意的是,为了使Row Group Index有效利用,向表中加载数据时,必须对需要使用索引的字段进行排序,否则,min/max会失去意义。另外,这种索引通常用于数值型字段的查询过滤优化上。

看下面的例子:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. 'orc.bloom.filter.fpp'='0.05',
  6. 'orc.stripe.size'='10485760',
  7. 'orc.row.index.stride'='10000')
  8. AS
  9. SELECT CAST(siteid AS INT) AS id,
  10. pcid
  11. FROM lxw1234_text
  12. DISTRIBUTE BY id sort BY id;

直接执行下面的查询(未使用索引):

  1. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

很明显,扫描了所有记录。再使用索引查询:

  1. set hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

可以看到,只扫描了部分记录,即根据Row Group Index中的min/max跳过了WHERE条件中不包含的stripes,索引有效果。

假如有下面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');

执行的过程大概是这样的:

先根据Row Group Index中的min/max,判断哪些stripes/file包含在内,接着逐行扫描,过滤pcid IN (‘0005E26F0DCCDB56F9041C’,’A’)的记录。

可以看到,没有全表扫描,跳过了一部分stripes。这样看来,如果where后面的id范围很大,完全可能会包含所有的文件,再根据pcid过滤时候,又相当于全表扫描了。

对于这种查询场景的优化策略,就是下面的BloomFilter索引。

Bloom Filter Index

之前有篇文章《大数据去重统计之BloomFilter》,介绍过BloomFilter的原理和Java版的例子。Hive的ORC中基于此,提供了BloomFilter索引,用于性能优化。

在建表时候,通过表参数”orc.bloom.filter.columns”=”pcid”来指定为那些字段建立BloomFilter索引,这样,在生成数据的时候,会在每个stripe中,为该字段建立BloomFilter的数据结构,当查询条件中包含对该字段的=号过滤时候,先从BloomFilter中获取以下是否包含该值,如果不包含,则跳过该stripe.

看下面的建表语句,为pcid字段建立BloomFilter索引:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. "orc.bloom.filter.columns"="pcid",
  6. 'orc.bloom.filter.fpp'='0.05',
  7. 'orc.stripe.size'='10485760',
  8. 'orc.row.index.stride'='10000')
  9. AS
  10. SELECT CAST(siteid AS INT) AS id,
  11. pcid
  12. FROM lxw1234_text
  13. DISTRIBUTE BY id sort BY id;

然后执行上面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');


您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。

通过Row Group Index和Bloom Filter Index的双重索引优化,这条语句最终执行,只扫描了60000条记录,大大节省了MapTask的执行时间和资源。

之前的文章《更高的压缩比,更好的性能–使用ORC文件格式优化Hive》中介绍了Hive的ORC文件格式,它不但有着很高的压缩比,节省存储和计算资源之外,还通过一个内置的轻量级索引,提升查询的性能。这个内置的轻量级索引,就是下面所说的Row Group Index。

其实ORC支持的索引不止这一种,还有一种BloomFilter索引,两者结合起来,更加提升了Hive中基于ORC的查询性能。

说明一下:本文使用Hive2.0.0 + hadoop-2.3.0-cdh5.0.0作为测试环境。表lxw1234_text为text格式保存,总记录数为12000920。

Row Group Index

由之前的文章知道,一个ORC文件包含一个或多个stripes(groups of row data),每个stripe中包含了每个columnmin/max值的索引数据,当查询中有<,>,=的操作时,会根据min/max值,跳过扫描不包含的stripes

而其中为每个stripe建立的包含min/max值的索引,就称为Row Group Index,也叫min-max Index,或者Storage Index。在建立ORC格式表时,指定表参数’orc.create.index’=’true’之后,便会建立Row Group Index,需要注意的是,为了使Row Group Index有效利用,向表中加载数据时,必须对需要使用索引的字段进行排序,否则,min/max会失去意义。另外,这种索引通常用于数值型字段的查询过滤优化上。

看下面的例子:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. 'orc.bloom.filter.fpp'='0.05',
  6. 'orc.stripe.size'='10485760',
  7. 'orc.row.index.stride'='10000')
  8. AS
  9. SELECT CAST(siteid AS INT) AS id,
  10. pcid
  11. FROM lxw1234_text
  12. DISTRIBUTE BY id sort BY id;

直接执行下面的查询(未使用索引):

  1. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

很明显,扫描了所有记录。再使用索引查询:

  1. set hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 1382 AND id <= 1399;

可以看到,只扫描了部分记录,即根据Row Group Index中的min/max跳过了WHERE条件中不包含的stripes,索引有效果。

假如有下面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');

执行的过程大概是这样的:

先根据Row Group Index中的min/max,判断哪些stripes/file包含在内,接着逐行扫描,过滤pcid IN (‘0005E26F0DCCDB56F9041C’,’A’)的记录。

可以看到,没有全表扫描,跳过了一部分stripes。这样看来,如果where后面的id范围很大,完全可能会包含所有的文件,再根据pcid过滤时候,又相当于全表扫描了。

对于这种查询场景的优化策略,就是下面的BloomFilter索引。

Bloom Filter Index

之前有篇文章《大数据去重统计之BloomFilter》,介绍过BloomFilter的原理和Java版的例子。Hive的ORC中基于此,提供了BloomFilter索引,用于性能优化。

在建表时候,通过表参数”orc.bloom.filter.columns”=”pcid”来指定为那些字段建立BloomFilter索引,这样,在生成数据的时候,会在每个stripe中,为该字段建立BloomFilter的数据结构,当查询条件中包含对该字段的=号过滤时候,先从BloomFilter中获取以下是否包含该值,如果不包含,则跳过该stripe.

看下面的建表语句,为pcid字段建立BloomFilter索引:

  1. CREATE TABLE lxw1234_orc2 stored AS ORC
  2. TBLPROPERTIES
  3. ('orc.compress'='SNAPPY',
  4. 'orc.create.index'='true',
  5. "orc.bloom.filter.columns"="pcid",
  6. 'orc.bloom.filter.fpp'='0.05',
  7. 'orc.stripe.size'='10485760',
  8. 'orc.row.index.stride'='10000')
  9. AS
  10. SELECT CAST(siteid AS INT) AS id,
  11. pcid
  12. FROM lxw1234_text
  13. DISTRIBUTE BY id sort BY id;

然后执行上面的查询:

  1. SET hive.optimize.index.filter=true;
  2. SELECT COUNT(1) FROM lxw1234_orc1 WHERE id >= 0 AND id <= 1000
  3. AND pcid IN ('0005E26F0DCCDB56F9041C','A');


您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。

通过Row Group Index和Bloom Filter Index的双重索引优化,这条语句最终执行,只扫描了60000条记录,大大节省了MapTask的执行时间和资源。

转:Hive性能优化之ORC索引–Row Group Index vs Bloom Filter Index的更多相关文章

  1. Hive性能优化

    1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...

  2. Hive性能优化上的一些总结

    https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...

  3. MySQL性能优化(三):索引

    原文:MySQL性能优化(三):索引 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbi ...

  4. Hive性能优化(全面)

    1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 ...

  5. SqlServer性能优化 查询和索引优化(十二)

    查询优化的过程: 查询优化: 功能:分析语句后最终生成执行计划 分析:获取操作语句参数 索引选择 Join算法选择 创建测试的表: select * into EmployeeOp from Adve ...

  6. 数据库性能优化:SQL索引

    SQL索引在数据库优化中占有一个非常大的比例, 一个好的索引的设计,可以让你的效率提高几十甚至几百倍,在这里将带你一步步揭开他的神秘面纱. 1.1 什么是索引? SQL索引有两种,聚集索引和非聚集索引 ...

  7. SQL Server 性能优化之——重复索引

    原文 http://www.cnblogs.com/BoyceYang/archive/2013/06/16/3139006.html 阅读导航 1. 概述 2. 什么是重复索引 3. 查找重复索引 ...

  8. MySQL性能优化,MySQL索引优化,order by优化,explain优化

    前言 今天我们来讲讲如何优化MySQL的性能,主要从索引方面优化.下期文章讲讲MySQL慢查询日志,我们是依据慢查询日志来判断哪条SQL语句有问题,然后在进行优化,敬请期待MySQL慢查询日志篇 建表 ...

  9. 性能优化之mysql索引优化

    sql及索引优化 如何通过慢查询日志发现有问题的sql? 查询次数多且每次查询占用时间长的sql通常为pt-query-digest分析的前几个查询 IO大的sql注意pt-query-digest分 ...

随机推荐

  1. qt下通过socket传送中文

    zz 1.在main函数里我之前就加了一句QTextCodec::setCodecForTr( QTextCodec::codecForLocale() ); 现在再加一句QTextCodec::se ...

  2. sql查询原理和Select执行顺序

    一 sql语句的执行步骤 1)语法分析,分析语句的语法是否符合规范,衡量语句中各表达式的意义. 2) 语义分析,检查语句中涉及的所有数据库对象是否存在,且用户有相应的权限. 3)视图转换,将涉及视图的 ...

  3. Grunt JS构建环境搭建以及使用入门

    Grunt JS构建环境搭建以及使用入门 1.应用场景 一种自动化任务处理工具,对于日常的需求(代码规则检查.代码合并)可以实现自动化执行,只需要保留package.json和Gruntfile.js ...

  4. Angular 学习笔记 :初识 $digest , $watch , $apply,浅析用法 。

    传统的浏览器事件循环 :浏览器本身一直在等待事件,并作出响应.如果你点击一个button或者在input 中输入字符,我们在 JS 中 监听这些事件并设定了回调函数,那么这些事件被触发以后,回调函数就 ...

  5. mysql双向主从同步

    双向主从同步 双方互相主从同步配置 然后再my.cnf中加上如下配置 [mysqld]master1:auto_increment_increment = 2 //自增ID的间隔,如1 3 5间隔为2 ...

  6. delphi webbrowser post自动登录

    delphi webbrowser post自动登录     var  EncodedDataString: WideString;  PostData: OleVariant;  Headers: ...

  7. QQ空间动态内容,好友信息,点赞爬虫脚本

    一.安装基础的软件包: 1.准备好火狐浏览器,并下载geckodriver,将geckodriver加入到环境变量:下载geckodriver的地址:https://pan.baidu.com/s/1 ...

  8. SQL TOP分页法

    原理: PageSize, PageIndex: 升序   order  by  a asc a的 值 大于, 上一页数据 最大的  a值. 降序  order by  a desc a的 值 小于, ...

  9. jQuery时间轴鼠标悬停动画

    在线演示 本地下载

  10. Arrays.asList()与toArray()

    Arrays.asList() 使用Arrays.asList()把数组转换成集合时,不能使用用于修改集合的方法(例如add.remove.clear),这将导致跑出UnsupportOperatio ...