【Foreign】光 [莫比乌斯反演]
光
Time Limit: 10 Sec Memory Limit: 128 MB
Description
天猫有一个长方形盒子,长宽分别为A,B。
这个长方形盒子的内壁全部是镜面。
天猫在这个盒子的左下方放了一个激光灯。
这个灯可以照向盒子内的任意角度。
现在天猫想要打开这个激光灯,但是他想让光线按照如下规则照射:
1.这束光必须恰好打到盒子边缘反射D次,并且不能碰到任意一个角落(除了出发点以及结束点)。
2.这束光必须到达盒子右上角,并且结束反射。
天猫想要知道,所有合法的光线路线的长度平方和是多少。
作为一个资深OIer,你应该知道输出要对10^9+7取模。
Input
一行三个数,表示A、B、D。
Output
一个数,表示路径平方和。
Sample Input
Sample Output
HINT
D<=10^9, A,B<=10^6
Solution
首先,我们注意到若一束光在一个平面反射,相当于镜面一侧的物体对称到镜面另一侧,而光线穿过镜面照到物体成的虚像上。
所以,我们可以认为:有一个D∗D的网格,需要在这个网格上面找到一点(x,y),要满足x+y−2 = D,这样的话,我们把(0,0)与(x,y)连接起来,连线所经过的网格边就是镜面反射时经过的边。也就是说,任意的合法方案与整数对(x,y)是一一对应的。
注意,由于在反射过程中,不能碰到网格的角落,所以应该满足(0,0)与(x,y)连线上没有其他整点,也就是gcd(x,y)=1,即gcd(x,D+2)=1。
然后用莫比乌斯反演推一波式子,最后发现要用暴力解决qaq。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<bitset>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ;
const int Niyu = ; s64 A, B, D;
int P[ONE],num;
int vis[ONE];
s64 Ans; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Factor(int x)
{
for(int i=; i*i<=x; i++)
if(x % i == )
{
P[++num] = i;
while(x % i == ) x /= i;
}
if(x != ) P[++num] = x;
} int Calc(int n)
{
return (s64)n * (n+) % MOD * (*n+) % MOD * Niyu % MOD;
} void Deal()
{
int d = , N = ;
for(int i=; i<=num; i++)
if(vis[i]) d = (s64)d * P[i] % MOD ,N++;
N = N & ? MOD- : ;
Ans = Ans + (s64)N % MOD * d % MOD * d % MOD * Calc((D+) / d) % MOD,
Ans %= MOD;
} void Dfs(int T)
{
if(T > num) {Deal(); return;}
vis[T] = ; Dfs(T+);
vis[T] = ; Dfs(T+);
} int main()
{
cin>>A>>B>>D;
if(D & ) {printf(""); return ;}
Factor(D + );
Dfs();
printf("%d", (s64)(A * A % MOD + B * B % MOD) % MOD * Ans % MOD);
}
【Foreign】光 [莫比乌斯反演]的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- windows编程了解
文章:浅谈Windows API编程 (这个经典)
- java---StringBuilder类的用法(转载)
转载自http://blog.csdn.net/zi_jun/article/details/7624999 String对象是不可改变的.每次使用 System.String类中的方法之一时,都要在 ...
- LintCode-7-二叉树的序列化和反序列化
二叉树的序列化和反序列化 设计一个算法,并编写代码来序列化和反序列化二叉树.将树写入一个文件被称为"序列化",读取文件后重建同样的二叉树被称为"反序列化". 如 ...
- JavaScript:理解事件、事件处理函数、钩子函数、回调函数
详情请点击 http://www.jianshu.com/p/a0c580ed3432
- [Redis]在.NET平台下的具体应用
一.安装第三方驱动 PM> Install-Package ServiceStack.Redis 二.使用C#语言调用类库访问Redis
- 创建 cordova 项目
1. 安装 node.js 2.安装 cordova : npm install -g cordova 3.创建 安卓项目: cordova create <项目路径> <包名&g ...
- 第22天:js改变样式效果
一.输出语句 1.alert:弹出警示框(用的非常少,用户体验不好)完整写法:window.alert(“执行语句”):window对象,窗口,一般情况可省略alert(123); 2.console ...
- Go语言【第五篇】:Go条件语句
Go语言条件 条件语句需要开发者通过指定一个或多个条件,并通过测试条件是否为true来决定是否执行指定语句,并在条件为false的情况再执行另外的语句.下图展示了程序语言中条件语句的结构: Go语言提 ...
- echart模块化单文件引入
echart模块化单文件引入百度上面是推荐这样使用.今天看了一下,做了个Demo. 文件结构如下:
- CF995A Tesla
题目描述 Allen dreams of one day owning a enormous fleet of electric cars, the car of the future! He kno ...